Restormer Efficient Transformer for High-Resolution Image Restoration论文代码运行记录

本文主要是介绍Restormer Efficient Transformer for High-Resolution Image Restoration论文代码运行记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • Restormer代码训练和测试运行记录
      • 文章及代码地址
      • 1. 所需环境
      • 2. 配置环境
      • 3. 安装gdrive以便下载数据集
      • 4. 放置权重文件
      • 5. 运行Demo
      • 运行单图像散焦去模糊
      • 训练、测试

Restormer代码训练和测试运行记录

文章及代码地址

文章名称:Restormer: Efficient Transformer for High-Resolution Image Restoration(CVPR 2022)

github代码地址: CVPR 2022–Oral] Restormer

我的百度网盘:链接:https://pan.baidu.com/s/1z89DzRazG2HBO8uBFUPJFg?pwd=k1fn
提取码:k1fn

我百度网盘代码所含内容:

  1. 创建了requirements.txt文件,除了torch,其他的依赖都包括其中。
  2. 为了下载谷歌数据集所需的gdrive安装包,go安装包。(只能在linux中使用)
  3. 包含单图像散焦去模糊的预训练权重,其他所有的权重文件单独放一个网盘来了,按需下载。

所有权重文件百度网盘:链接:https://pan.baidu.com/s/1Kjg8KhITGheXDjRZwp3rKA?pwd=1pof
提取码:1pof

1. 所需环境

3060 Laptop+WSL 22.04+ cuda 11.8 +~~PyTorch 1.8.1(无法使用)~~PyTorch 2.0.1 (可使用)

错误

错误一:3060 Laptop架构无法使用作者原有的PyTorch 1.8.1版本,会报错如下。我猜测30系显卡应该都会报错,因为30系显卡都是sm_86架构,PyTorch 1.8.1 只支持最高sm_75架构。

虽说安装1.8版本,可以通过 torch.cuda.is_abailable()查看返回是True,但是无法运行该代码。

/home/wang/miniconda3/envs/Restormer/lib/python3.8/site-packages/torch/cuda/__init__.py:104: UserWarning:
NVIDIA GeForce RTX 3060 Laptop GPU with CUDA capability sm_86 is not compatible with the current PyTorch installation.
The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_61 sm_70 sm_75 compute_37.

在这里插入图片描述

2. 配置环境

  1. 克隆仓库,并进入该文件夹

    git clone https://github.com/swz30/Restormer.git
    cd Restormer
    
  2. 新建虚拟环境

    conda create -n Restormer python=3.8
    conda activate Restormer
    
  3. 因为github没有给requirements.tet文件,因此我们自己创建一个。如果你通过网盘下载的文件夹,里面包含该requirements.tet文件,无需再次创建。

    touch requirements.txt
    vim requirements.txt
    

    把如下内容复制,粘贴直接右键即可。

    matplotlib
    scikit-learn
    scikit-image
    opencv-python
    yacs
    joblib
    natsort
    h5py
    tqdm
    einops
    gdown
    addict
    future
    lmdb
    numpy
    pyyaml
    requests
    scipy
    tb-nightly
    yapf
    lpips
    
  4. 安装依赖

    # 下面是作者的版本,因为30系显卡不支持PyTorch1.8了,咱们直接最新版吧。
    #  conda install pytorch=1.8 torchvision cudatoolkit=10.2 -c pytorch 
    # PyTorch官网安装,这是适用于cuda 11.8的 2.0.1版本。
    pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
    pip install requirements.txt
    

在这里插入图片描述

  1. 安装basicsr,如果是windows可能会报错。

    python setup.py develop --no_cuda_ext
    

安装成功之后如下图所示。
在这里插入图片描述

至此环境已经准备完成。

3. 安装gdrive以便下载数据集

备注:如果你只运行demo,就没必要使用gdrive了,可以不安装。或者你自己也已经有GoPro等数据集了,也不要安装这个。如果你有自己的模糊数据集,也不用安装这个。

从谷歌云盘下载文件,需要先安装Golang,然后使用Golang包管理工具“go”来安装“gdrive”。

  1. 安装 go

    curl -O https://storage.googleapis.com/golang/go1.11.1.linux-amd64.tar.gz
    mkdir -p ~/installed
    tar -C ~/installed -xzf go1.11.1.linux-amd64.tar.gz
    mkdir -p ~/go
    
  2. 将go添加到环境变量中

    export GOPATH=$HOME/go
    export PATH=$PATH:$HOME/go/bin:$HOME/installed/go/bin
    

    具体来说,这两个环境变量的含义如下:

    1. export GOPATH=$HOME/go:这个命令将设置一个名为 “GOPATH” 的环境变量,它的值为 “ H O M E / g o " ,其中 " HOME/go",其中 " HOME/go",其中"HOME” 表示当前用户的home目录。这个环境变量告诉编译器和其他工具在哪里寻找 Go 语言的源代码、二进制文件和其他相关资源。
    2. export PATH=$PATH:$HOME/go/bin:$HOME/installed/go/bin:这个命令将向系统的环境变量 “PATH” 中添加两个目录,分别为 “ H O M E / g o / b i n " 和 " HOME/go/bin" 和 " HOME/go/bin""HOME/installed/go/bin”。这些目录包含了一些与 Go 语言相关的可执行文件,例如 “go” 命令和 “gofmt” 命令等。通过将这些目录添加到 “PATH” 环境变量中,您可以在命令行中直接使用这些命令,而无需输入完整的路径。
  3. 安装 gdrive

    go get github.com/prasmussen/gdrive
    

    从 GitHub 上下载一个名为 “gdrive” 的代码库,并将其安装到您的计算机上。

    注意:上述代码可能无法使用。

    那就通过手动安装,如下命令

    wget https://github.com/prasmussen/gdrive/releases/download/2.1.1/gdrive_2.1.1_linux_386.tar.gz
    tar -xvf gdrive_2.1.1_linux_386.tar.gz
    sudo mv gdrive /usr/local/bin/
    gdrive help
    

4. 放置权重文件

记得把权重文件放置在\Defocus_Deblurring\pretrained_models该目录下,本文只做了散焦去模糊的例子。

谷歌云盘地址:文件夹 - Google 云端硬盘(仅包含单图像散焦去噪权重)

因为我谷歌云盘不常用,上面的是作者提供的谷歌网盘,我保存到百度网盘中了,包含去噪、去雨、运动去模糊、散焦去模糊等全部预训练权重文件。

我的百度网盘:链接:https://pan.baidu.com/s/1Kjg8KhITGheXDjRZwp3rKA?pwd=1pof
提取码:1pof

5. 运行Demo

运行单图像散焦去模糊

如果你环境配置好了,就是第二步配置环境都已经完成,那就可以尝试运行demo了。

 python demo.py --task Single_Image_Defocus_Deblurring --input_dir './demo/degraded/' --result_dir './demo/restored/'

该命令输入如下所示。

在这里插入图片描述

去模糊效果对比图。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

训练、测试

下个博客一块再写吧,累了

这篇关于Restormer Efficient Transformer for High-Resolution Image Restoration论文代码运行记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/372755

相关文章

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据

关于rpc长连接与短连接的思考记录

《关于rpc长连接与短连接的思考记录》文章总结了RPC项目中长连接和短连接的处理方式,包括RPC和HTTP的长连接与短连接的区别、TCP的保活机制、客户端与服务器的连接模式及其利弊分析,文章强调了在实... 目录rpc项目中的长连接与短连接的思考什么是rpc项目中的长连接和短连接与tcp和http的长连接短

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Servlet中配置和使用过滤器的步骤记录

《Servlet中配置和使用过滤器的步骤记录》:本文主要介绍在Servlet中配置和使用过滤器的方法,包括创建过滤器类、配置过滤器以及在Web应用中使用过滤器等步骤,文中通过代码介绍的非常详细,需... 目录创建过滤器类配置过滤器使用过滤器总结在Servlet中配置和使用过滤器主要包括创建过滤器类、配置过滤

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

python与QT联合的详细步骤记录

《python与QT联合的详细步骤记录》:本文主要介绍python与QT联合的详细步骤,文章还展示了如何在Python中调用QT的.ui文件来实现GUI界面,并介绍了多窗口的应用,文中通过代码介绍... 目录一、文章简介二、安装pyqt5三、GUI页面设计四、python的使用python文件创建pytho

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件