算法:管窥算法-最大连续子序列和

2023-11-08 20:40

本文主要是介绍算法:管窥算法-最大连续子序列和,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.一些逻辑比较复杂的题用离散数学来撸逻辑,逻辑就会很清楚了,就不会有错

 

2.经典算法问题 - 最大连续子数列和

https://www.cnblogs.com/conw/p/5896155.html

  1.暴力法

复杂度O(N^3)。假设数组长度为N。因为有3个嵌套的循环,每个循环最大可能次数与n的一次方成线性关系。

 1     public static int B(int[] a){
 2         int n= a.length;//获取数组长度
 3         int maxSum=a[0];//最大和初始化为数组第一个值
 4         int currSum;//当前子序列的和
 5         //设i为子序列头,j为子序列尾,那么没一对i,j就对应一个子序列。
 6 //        用两个嵌套的循环来确定每一对i,j
 7         for(int i=0;i<n;i++){
 8             for(int j=i;j<n;j++){
 9                 currSum=0;//初始化当前子序列和为0
10 //                下面的这个循环用于求一对i,j确定的子序列的和
11                 for(int k=i;k<=j;k++){
12                     currSum+=a[k];
13                 }
14 //                如果该子序列的和大于最大和就更新最大和
15                 if(currSum>maxSum){
16                     maxSum=currSum;
17                 }
18             }
19         }
20         //返回最大和
21         return maxSum;
22     }

 

 

  2.分治法:时间复杂度T(n)=O(nlogn);n为数组长度。

最多可能递归的次数与n成线性,所以为logn,每次递归里面有一个循环(该循环与n成线性,所以为n),即时间复杂度为nlogn

 1 /**
 2  * 最大连续子数列和(接口无法统一,因为要用到递归)-分治法
 3  * @param a
 4  * @return
 5  */
 6     /*
 7      分治法思路:
 8      这个最大和子序列的元素要么
 9      A:全在中点左边
10      B:全在中点的右边
11      C:一部分在左边一部分在右边
12     如果是C情况,是能够简单直接求出最大和的,
13     C求最大和方法:
14     左边部分向左扩展为和最大的子序列,右边部分向右扩展为和最大
15     的子序列,然后相加即可(这个扩展的复杂度为n)。
16     如果为A(或B):调用函数递归左(或右)子序列即可。
17     三种情况的最大子序列都求出来。
18     最后比较三种情况求出来的值哪个最大,哪个就是最大子序列了
19     */
20     
21     //from表示递归的数组的首元素下标,to表示尾元素下标,
22 //    实质上由下标构建出一个子数组来递归。
23     public static int B2(int[] a,int from,int to){
24         //下标相等说明只有一个元素,直接返回
25         if(from==to){
26             return a[from];
27         }
28         //求出中点
29         int middle=(from+to)/2;
30 //        全在中点左边。递归
31         int s1=A2.B2(a, from, middle);
32 //        全在中点的右边。递归
33         int s2=A2.B2(a,middle+1,to);
34 //        一部分在左边一部分在右边
35         //求左边部分最大和
36         int left=a[middle];
37         int currSum=a[middle];
38         for(int i=middle-1;i>=from;i--){
39             currSum+=a[i];
40             if(currSum>left){
41                 left=currSum;
42             }
43         }
44         //求右边部分最大和
45         int right=a[middle+1];
46         currSum=a[middle+1];
47         for(int i=middle+2;i<=to;i++){
48             currSum+=a[i];
49             if(currSum>right){
50                 right=currSum;
51             }
52         }
53         int s3=left+right;
54         //比较三种情况的子序列和,返回最大那个
55         //return s1>s2?s1:(s2>s3?s2:s3);这是错误的,只判断s1>s2就返回s1了,但s1不一定>s3啊
56         return (s1>s2 && s1>s3)?s1:(s2>s3?s2:s3);
57     }

 

  3.分析法(注:分析法并不是常规的算法,而是根据实际情况分析出来的算法,所以分析法是没有统一标准和特征的)

通过分析得出了非常简便的方法,且时间复杂度为n(当然因题而异)

分析法和动态规划一样?

 

4.动态规划法(最优子问题),时间复杂度O(n)。

 1 /**
 2  * 最大连续子数列和(接口统一)-分析法
 3  * @param a
 4  * @return
 5  */
 6     /*
 7      分析法思路:
 8      分析题目:
 9      定义一个sum=首元素,如果sum<0,那么就取sum=sum序列的下一个元素。否则sum+=sum序列的下一个元素。
10     */
11     
12     public static int B3(int[] a){
13         //取出数组长度
14         int l = a.length;
15         int sum=a[0];
16         int result=a[0];
17 //        遍历数组
18         for(int i=1;i<l;i++){
19             if(sum<0){
20             //表示舍弃前面相加的和<0的部分
21                 sum=a[i];
22             }else{
23                 sum+=a[i];
24             }
25             if(sum>result){
26                 result=sum;
27             }
28         }
29         return result;
30     }

 

 

转载于:https://www.cnblogs.com/minconding/p/10453030.html

这篇关于算法:管窥算法-最大连续子序列和的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/372383

相关文章

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

如何提高Redis服务器的最大打开文件数限制

《如何提高Redis服务器的最大打开文件数限制》文章讨论了如何提高Redis服务器的最大打开文件数限制,以支持高并发服务,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录如何提高Redis服务器的最大打开文件数限制问题诊断解决步骤1. 修改系统级别的限制2. 为Redis进程特别设置限制

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj2406(连续重复子串)

题意:判断串s是不是str^n,求str的最大长度。 解题思路:kmp可解,后缀数组的倍增算法超时。next[i]表示在第i位匹配失败后,自动跳转到next[i],所以1到next[n]这个串 等于 n-next[n]+1到n这个串。 代码如下; #include<iostream>#include<algorithm>#include<stdio.h>#include<math.