二手车交易价格预测:数据的探索性分析

2023-11-08 19:18

本文主要是介绍二手车交易价格预测:数据的探索性分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

二手车交易价格预测:数据的探索性分析

1.EDA目标

  • EDA的价值主要在于熟悉数据集,了解数据集,对数据集进行验证来确定所获得数据集可以用于接下来的机器学习或者深度学习使用。

  • 当了解了数据集之后我们下一步就是要去了解变量间的相互关系以及变量与预测值之间的存在关系。

  • 引导数据科学从业者进行数据处理以及特征工程的步骤,使数据集的结构和特征集让接下来的预测问题更加可靠。

  • 完成对于数据的探索性分析,并对于数据进行一些图表或者文字总结并打卡。

2.EDA 内容介绍

  1. 载入各种数据科学以及可视化库:

    数据科学库 pandas、numpy、scipy;
    可视化库 matplotlib、seabon;
    其他;
    
  2. 载入数据:

    载入训练集和测试集;
    简略观察数据(head()+shape);
    
  3. 数据总览:

    通过describe()来熟悉数据的相关统计量
    通过info()来熟悉数据类型
    
  4. 判断数据缺失和异常

     查看每列的存在nan情况异常值检测
    
  5. 了解预测值的分布

     总体分布概况(无界约翰逊分布等)查看skewness and kurtosis查看预测值的具体频数
    
  6. 特征分为类别特征和数字特征,并对类别特征查看unique分布

  7. 数字特征分析

     相关性分析查看几个特征得 偏度和峰值每个数字特征得分布可视化数字特征相互之间的关系可视化多变量互相回归关系可视化
    
  8. 类型特征分析

     unique分布类别特征箱形图可视化类别特征的小提琴图可视化类别特征的柱形图可视化类别特征的每个类别频数可视化(count_plot)
    
  9. 用pandas_profiling生成数据报告

3. 具体步骤

3.1 载入各种数据科学与可视化库
import numpy as np
import pandas as pd
import warnings
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.special import jn
from IPython.display import display, clear_output
import time
warnings.filterwarnings('ignore')
%matplotlib inline
## 模型预测的
from sklearn import linear_model
from sklearn import preprocessing
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor,GradientBoostingRegressor
## 数据降维处理的
from sklearn.decomposition import PCA,FastICA,FactorAnalysis,SparsePCA
import lightgbm as lgb
import xgboost as xgb
## 参数搜索和评价的
from sklearn.model_selection import GridSearchCV,cross_val_score,StratifiedKFold,train_test_split
from sklearn.metrics import mean_squared_error, mean_absolute_error
3.2 数据读取
## 通过Pandas对于数据进行读取 
Train_data = pd.read_csv('used_car_train_20200313.csv', sep=' ')
TestA_data = pd.read_csv('used_car_testA_20200313.csv', sep=' ')
## 输出数据的大小信息
print('Train data shape:',Train_data.shape)
print('TestA data shape:',TestA_data.shape)
Train data shape: (150000, 31)
TestA data shape: (50000, 30)
3.3 数据信息查看

要养成看数据集的head()以及shape的习惯,这会让你每一步更放心,导致接下里的连串的错误, 如果对自己的pandas等操作不放心,建议执行一步看一下,这样会有效的方便你进行理解函数并进行操作

Train_data.head()
#通过 .info() 简要可以看到对应一些数据列名,以及NAN缺失信息
Train_data.info()
#通过 .columns 查看列名
Train_data.columns
TestA_data.info() 
#查看每一列类型和缺失值情况
#通过 .describe() 可以查看数值特征列的一些统计信息
Train_data.describe()
  1. describe种有每列的统计量,个数count、平均值mean、方差std、最小值min、中位数25% 50% 75% 、以及最大值 看这个信息主要是瞬间掌握数据的大概的范围以及每个值的异常值的判断,比如有的时候会发现999 9999 -1 等值这些其实都是nan的另外一种表达方式,有的时候需要注意下
  2. info 通过info来了解数据每列的type,有助于了解是否存在除了nan以外的特殊符号异常

4. 经验总结

在实际的不管是工程还是比赛过程中,EDA只是最开始的一步,也是最基本的一步。

接下来一般要结合模型的效果以及特征工程等来分析数据的实际建模情况,根据自己的一些理解,查阅文献,对实际问题做出判断和深入的理解。

最后不断进行EDA与数据处理和挖掘,来到达更好的数据结构和分布以及较为强势相关的特征

数据探索在机器学习中我们一般称为EDA(Exploratory Data Analysis):

是指对已有的数据(特别是调查或观察得来的原始数据)在尽量少的先验假定下进行探索,通过作图、制表、方程拟合、计算特征量等手段探索数据的结构和规律的一种数据分析方法。

数据探索有利于我们发现数据的一些特性,数据之间的关联性,对于后续的特征构建是很有帮助的。

  1. 对于数据的初步分析(直接查看数据,或.sum(),
    .mean(),.descirbe()等统计函数)可以从:样本数量,训练集数量,是否有时间特征,是否是时许问题,特征所表示的含义(非匿名特征),特征类型(字符类似,int,float,time),特征的缺失情况(注意缺失的在数据中的表现形式,有些是空的有些是”NAN”符号等),特征的均值方差情况。
  2. 分析记录某些特征值缺失占比30%以上样本的缺失处理,有助于后续的模型验证和调节,分析特征应该是填充(填充方式是什么,均值填充,0填充,众数填充等),还是舍去,还是先做样本分类用不同的特征模型去预测。
  3. 对于异常值做专门的分析,分析特征异常的label是否为异常值(或者偏离均值较远或者事特殊符号),异常值是否应该剔除,还是用正常值填充,是记录异常,还是机器本身异常等。
  4. 对于Label做专门的分析,分析标签的分布情况等。
  5. 进步分析可以通过对特征作图,特征和label联合做图(统计图,离散图),直观了解特征的分布情况,通过这一步也可以发现数据之中的一些异常值等,通过箱型图分析一些特征值的偏离情况,对于特征和特征联合作图,对于特征和label联合作图,分析其中的一些关联性。

这篇关于二手车交易价格预测:数据的探索性分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/371939

相关文章

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

在Mysql环境下对数据进行增删改查的操作方法

《在Mysql环境下对数据进行增删改查的操作方法》本文介绍了在MySQL环境下对数据进行增删改查的基本操作,包括插入数据、修改数据、删除数据、数据查询(基本查询、连接查询、聚合函数查询、子查询)等,并... 目录一、插入数据:二、修改数据:三、删除数据:1、delete from 表名;2、truncate