Caffe使用——01 以LeNet训练Mnist数据集为例

2023-11-08 18:58

本文主要是介绍Caffe使用——01 以LeNet训练Mnist数据集为例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 CNN训练初体验(使用几个命令来训练手写数字数据集)

1.1 下载数据、转换数据格式

设CAFFE_ROOT为caffe的安装路径。

cd $CAFFE_ROOT
./data/mnist/get_mnist.sh
./examples/mnist/create_mnist.sh

上述脚本中的内容完成的工作就是下载并转换数据,暂不做详细介绍。

1.2 训练

cd $CAFFE_ROOT
./examples/mnist/train_lenet.sh

训练命令:

caffe train -solver lenet_solver.prototxt -gpu 0 -log_dir ./

caffe命令参数解释:

commands

train 训练和微调一个模型
test 对一个模型打分
device_query 显示GPU诊断信息
time 评估模型执行时间

flags

gpu : 指定用哪块GPU训练
model : 模型定义文件
log_dir : 指定log文件输出的路径。(这个路径必须事先存在)
weights : 用已经训练好的模型来初始化参数。
snapshot : 从之前训练的某个solver 状态恢复训练。
iterations : 和solver中的test_iter类似,运行迭代次数。
sighup_effect : 当收到SIGHUP信号时采取的动作,可选项:snap/stop/none。默认为snapshot,即打快照。
sigint_effect : 当收到SIGINT信号时要采取的动作,可选项同上,默认为stop。
solver : 指定求解器文本文件名。

1.3 评估模型性能

caffe time -model lenet.prototxt -gpu 0

2 求解器(solver)——训练超参数

查看训练脚本:

➜  caffe git:(zxdev_mac) cat ./examples/mnist/train_lenet.sh
#!/usr/bin/env sh
set -e./build/tools/caffe train --solver=examples/mnist/lenet_solver.prototxt $@

查看solver.prototxt

➜  caffe git:(zxdev_mac) cat examples/mnist/lenet_solver.prototxt
# The train/test net protocol buffer definition
# 用于训练测试的网络结构文件
net: "examples/mnist/lenet_train_test.prototxt"
# test_iter specifies how many forward passes the test should carry out.
# In the case of MNIST, we have test batch size 100 and 100 test iterations,
# covering the full 10,000 testing images.
# test_iter 指定test执行的时候迭代次数
test_iter: 100
# Carry out testing every 500 training iterations.
# 每训练500次执行一次test
test_interval: 500
# The base learning rate, momentum and the weight decay of the network.
# 网络的基础学习率,冲量,权衰量
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
# The learning rate policy
# inv 的学习策略,lr = base_lr * (1 + gamma * iter) ^ (-power)
lr_policy: "inv"
gamma: 0.0001
power: 0.75
# Display every 100 iterations
# 每迭代多少次显示 一次当前训练的信息,主要是loss和学习率
display: 100
# The maximum number of iterations
# 指定最大迭代次数
max_iter: 10000
# snapshot intermediate results
# 每迭代多少次保存一次模型的参数和训练状态。
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
# solver mode: CPU or GPU
solver_mode: GPU

3 定义网络结构 lenet_train_val.prototxt

网络结构定义在examples/mnist/lenet_train_test.prototxt中。

➜  caffe git:(zxdev_mac) cat examples/mnist/lenet_train_test.prototxt
# 网络(net)的名称为LeNet
name: "LeNet"
layer {# 这一层的名字是mnistname: "mnist"# 这一层的类型是Datao数据层type: "Data"# 这一层产生两个blobs,分别是data blob和label blobtop: "data"top: "label"include {# 该层参数 只在训练阶段有效phase: TRAIN}transform_param {# 此处还可添加mean_value,数据先减mean_value,再乘scale。注意若有此项,需要在inference时减均值。# mean_value: 128# 1/256.0 = 0.00390625,像素值控制在0到1之间。scale: 0.00390625}data_param {source: "examples/mnist/mnist_train_lmdb"# 指定训练阶段,每次迭代用50个。batch_size: 64backend: LMDB}
}
layer {name: "mnist"type: "Data"top: "data"top: "label"include {phase: TEST}transform_param {scale: 0.00390625}data_param {source: "examples/mnist/mnist_test_lmdb"batch_size: 100backend: LMDB}
}
layer {name: "conv1"type: "Convolution"bottom: "data"top: "conv1"# 卷积核学习率为基础学习率乘以 lr_multparam {lr_mult: 1}# 偏置学习率为基础学习率乘以 lr_multparam {lr_mult: 2}convolution_param {# 输出20个通道num_output: 20# 卷积核尺寸是5kernel_size: 5# 步长是1stride: 1# 随机初始化权重,用xavier算法,自动根据输入输出的数量来定初始化的比例weight_filler {type: "xavier"}# bais使用常数,默认用0填充。bias_filler {type: "constant"}}
}
layer {name: "pool1"type: "Pooling"bottom: "conv1"top: "pool1"pooling_param {# 采用最大值下采样pool: MAX# 池化核尺寸为2,步长为2kernel_size: 2stride: 2}
}
layer {name: "conv2"type: "Convolution"bottom: "pool1"top: "conv2"param {lr_mult: 1}param {lr_mult: 2}convolution_param {num_output: 50kernel_size: 5stride: 1weight_filler {type: "xavier"}bias_filler {type: "constant"}}
}
layer {name: "pool2"type: "Pooling"bottom: "conv2"top: "pool2"pooling_param {pool: MAXkernel_size: 2stride: 2}
}
layer {name: "ip1"type: "InnerProduct"bottom: "pool2"top: "ip1"param {lr_mult: 1}param {lr_mult: 2}inner_product_param {num_output: 500weight_filler {type: "xavier"}bias_filler {type: "constant"}}
}
layer {name: "relu1"type: "ReLU"bottom: "ip1"top: "ip1"
}
layer {name: "ip2"type: "InnerProduct"bottom: "ip1"top: "ip2"param {lr_mult: 1}param {lr_mult: 2}inner_product_param {num_output: 10weight_filler {type: "xavier"}bias_filler {type: "constant"}}
}
# 分类准确率层,只在测试阶段有效。用于计算分类的准确率
layer {name: "accuracy"type: "Accuracy"bottom: "ip2"bottom: "label"top: "accuracy"include {phase: TEST}
}
layer {name: "loss"type: "SoftmaxWithLoss"# 没有输出,只是计算lossbottom: "ip2"bottom: "label"top: "loss"
}

4 查看训练过程中的准确率和loss

将log_dir指定路径下的日志重命名后缀为log,例如mnist_train.log。
在log_dir下生成准确率图片:

../tools/extra/plot_training_log.py.example 0 test_acc_vs_iters.png mnist_train.log
../tools/extra/plot_training_log.py.example 2 test_loss_vs_iters.png mnist_train.log
../tools/extra/plot_training_log.py.example 6 train_acc_vs_iters.png mnist_train.log
../tools/extra/plot_training_log.py.example 4 lr_vs_iters.png mnist_train.log

这篇关于Caffe使用——01 以LeNet训练Mnist数据集为例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/371841

相关文章

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同