Python爬取汽车之家二手车数据并作可视化

2023-11-08 17:28

本文主要是介绍Python爬取汽车之家二手车数据并作可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家早好、午好、晚好吖 ❤ ~欢迎光临本文章

如果有什么疑惑/资料需要的可以点击文章末尾名片领取源码

课程亮点:

1、系统分析目标网页

2、html标签数据解析方法

3、海量数据一键保存

获取二手车数据

环境介绍:
  • python 3.8

  • pycharm 2022.3专业版

  • requests >>> pip install requests

  • parsel >>> pip install parsel

案例实现流程:

一. 思路分析

  1. 需要抓取什么数据

  2. 大概的流程和步骤

  3. 确定数据来源
    https://www.che168.com/china/list/

  4. 访问到 该地址

  5. 从访问之后的信息中 我们要取出 对应需要的数据字段

  6. 进行保存操作

  7. 分析翻页的规律

二. 代码实现

发送请求

提取数据

保存数据

代码展示
'''
python资料获取看这里噢!! 小编 V:qian97378,即可获取:
文章源码/教程/资料/解答等福利,还有不错的视频学习教程和PDF电子书!
'''
import requests     # pip install requests
import parsel       # pip install parsel
import csvwith open('汽车之家.csv', mode='w', newline='', encoding='utf-8') as f:csv.writer(f).writerow(['card_name', 'cards_unit', 'price', 'original_price', 'href_url', 'img_url'])
headers = {'cookie': 'fvlid=1678707796259lUxyb5ctia8Y; sessionid=88abf095-f918-4e12-9837-cf8e61024732; area=430112; che_sessionid=1476DA7D-0E1A-4DB6-A0E5-94074A95603C%7C%7C2023-03-13+19%3A43%3A16.765%7C%7C0; listuserarea=0; sessionip=175.13.226.104; Hm_lvt_d381ec2f88158113b9b76f14c497ed48=1699272164; UsedCarBrowseHistory=0%3A49368425; userarea=0; sessionvisit=80b96168-6a79-46b4-b8a5-64adbde2fdda; sessionvisitInfo=88abf095-f918-4e12-9837-cf8e61024732|www.che168.com|102179; che_sessionvid=BE7B0EF0-7E60-4A60-9FBE-5CE182AA0FD2; ahpvno=8; Hm_lpvt_d381ec2f88158113b9b76f14c497ed48=1699276565; ahuuid=1993BFC6-651A-471B-A2F0-549B12314CE8; showNum=56; v_no=59; visit_info_ad=1476DA7D-0E1A-4DB6-A0E5-94074A95603C||BE7B0EF0-7E60-4A60-9FBE-5CE182AA0FD2||-1||-1||59; che_ref=0%7C0%7C0%7C0%7C2023-11-06+21%3A16%3A04.741%7C2023-03-13+19%3A43%3A16.765; sessionuid=88abf095-f918-4e12-9837-cf8e61024732','User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36'
}
for page in range(100):url = f'https://www.che168.com/china/a0_0msdgscncgpi1ltocsp{page}exx0/?pvareaid=102179#currengpostion'# 1. 发送请求response = requests.get(url, headers=headers)# 2. 提取数据html_data = response.text# JSON格式的数据 -> 结构化数据 (根据层级关系取值) 字典取值 列表取值# 网页源代码 -> 非结构化数据# 所有的车辆信息 全部都在 li里面# 那我是不是可以先将 所有的 li 提取到# //ul[@class="viewlist_ul"]/liselect = parsel.Selector(html_data)# 拿到所有的lilis = select.xpath('//ul[@class="viewlist_ul"]/li')for li in lis:card_name = li.xpath('string(.//h4[@class="card-name"])').get()cards_unit = li.xpath('string(.//p[@class="cards-unit"])').get()price = li.xpath('string(.//span[@class="pirce"])').get()original_price = li.xpath('string(.//s)').get()href_url = li.xpath('.//a[@class="carinfo"]/@href').get()img_url = li.xpath('.//img/@src').get()print(card_name, cards_unit, price, original_price, href_url, img_url)# 多页采集 保存数据with open('汽车之家.csv', mode='a', newline='', encoding='utf-8') as f:csv.writer(f).writerow([card_name, cards_unit, price, original_price, href_url, img_url])

数据可视化

1. 导入模块
'''
python资料获取看这里噢!! 小编 V:qian97378,即可获取:
文章源码/教程/资料/解答等福利,还有不错的视频学习教程和PDF电子书!
'''
import pandas as pd
from pyecharts.charts import *
from pyecharts.commons.utils import JsCode
from pyecharts import options as opts
2. Pandas数据处理

2.1 读取数据

df = pd.read_csv('汽车之家.csv', encoding = 'utf-8')
df.head()

2.2 查看表格数据描述

df.describe()

df.isnull().sum()

df.dropna(axis=0, how='any', inplace=True)
3 Pyecharts可视化

3.1 各省市二手车数量柱状图

counts = df.groupby('城市')['品牌'].count().sort_values(ascending=False).head(20)
'''
python资料获取看这里噢!! 小编 V:qian97378,即可获取:
文章源码/教程/资料/解答等福利,还有不错的视频学习教程和PDF电子书!
'''
bar=(Bar(init_opts=opts.InitOpts(height='500px',width='1000px',theme='dark')).add_xaxis(counts.index.tolist()).add_yaxis('城市二手车数量',counts.values.tolist(),label_opts=opts.LabelOpts(is_show=True,position='top'),itemstyle_opts=opts.ItemStyleOpts(color=JsCode("""new echarts.graphic.LinearGradient(0, 0, 0, 1,[{offset: 0,color: 'rgb(255,99,71)'}, {offset: 1,color: 'rgb(32,178,170)'}])"""))).set_global_opts(title_opts=opts.TitleOpts(title='各个城市二手车数量柱状图'),xaxis_opts=opts.AxisOpts(name='书籍名称',type_='category',                                           axislabel_opts=opts.LabelOpts(rotate=90),),yaxis_opts=opts.AxisOpts(name='数量',min_=0,max_=500.0,splitline_opts=opts.SplitLineOpts(is_show=True,linestyle_opts=opts.LineStyleOpts(type_='dash'))),tooltip_opts=opts.TooltipOpts(trigger='axis',axis_pointer_type='cross')).set_series_opts(markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_='average',name='均值'),opts.MarkLineItem(type_='max',name='最大值'),opts.MarkLineItem(type_='min',name='最小值'),]))
)
bar.render_notebook()

3.3 二手车品牌占比情况

'''
python资料获取看这里噢!! 小编 V:qian97378,即可获取:
文章源码/教程/资料/解答等福利,还有不错的视频学习教程和PDF电子书!
'''
dcd_pinpai = df['品牌'].apply(lambda x:x.split(' ')[0])
df['品牌'] = dcd_pinpai
pinpai = df['品牌'].value_counts()
pinpai = pinpai[:5]
datas_pair_1 = [[i, int(j)] for i, j in zip(pinpai.index, pinpai.values)]
datas_pair_1
pie1 = (Pie(init_opts=opts.InitOpts(theme='dark',width='1000px',height='600px')).add('', datas_pair_1, radius=['35%', '60%']).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{d}%")).set_global_opts(title_opts=opts.TitleOpts(title="汽车之家二手车\n\n数量占比区间", pos_left='center', pos_top='center',title_textstyle_opts=opts.TextStyleOpts(color='#F0F8FF',font_size=20,font_weight='bold'),))
)
pie1.render_notebook() 

尾语

好了,今天的分享就差不多到这里了!

对下一篇大家想看什么,可在评论区留言哦!看到我会更新哒(ง •_•)ง

喜欢就关注一下博主,或点赞收藏评论一下我的文章叭!!!

最后,宣传一下呀~👇👇👇 更多源码、资料、素材、解答、交流 皆点击下方名片获取呀👇👇👇

这篇关于Python爬取汽车之家二手车数据并作可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/371371

相关文章

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Python装饰器之类装饰器详解

《Python装饰器之类装饰器详解》本文将详细介绍Python中类装饰器的概念、使用方法以及应用场景,并通过一个综合详细的例子展示如何使用类装饰器,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. 引言2. 装饰器的基本概念2.1. 函数装饰器复习2.2 类装饰器的定义和使用3. 类装饰

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2