【深度学习】卷积层填充和步幅以及其大小关系

2023-11-08 11:44

本文主要是介绍【深度学习】卷积层填充和步幅以及其大小关系,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考链接

【深度学习】:《PyTorch入门到项目实战》卷积神经网络2-2:填充(padding)和步幅(stride)

一、卷积

卷积是在深度学习中的一种重要操作,但实际上它是一种互相关操作,,首先我们来了解一下二维互相关:具体做法是对应数字相乘后相加

  Output具体的运算过程:

 而一个卷积运算的操作如下,给一个输入矩阵和一个核函数,我们将从输入特征的左上角开始与核函数求内积,然后在进行滑动窗口,求下一个内积。得到我们的输出,具体计算如下

 可以看出,通过卷积计算后,我们的原始数据特征变小了。假设输入矩阵为n\times n,核函数(Kernel)为f\times f,通常核是一个方阵形式。那么得到的输出结果为(n-f+1)\times (n-f+1)

一维和三维卷积

  1. 一维:文本,语言,时序序列
  2. 三维:视频,医学图像,气象地图

 二、卷积层的填充和步幅:控制输出大小的超参数

正如上面所说的假设输入特征为n\times n,核形状为f\times f,那么经过卷积核作用后,得到的输出形状为(n-f+1)\times (n-f+1)。可以看出,通常情况下输出特征会由于卷积核的作用而减小。而深度神经网络中,由于卷积核的作用,会导致我们的输出过早的变的很小,导致我们无法构建深层的神经网络。因此接下来介绍另外两个影响输出形状的方法,扩充(padding)和步幅(stride)

  • 有时候,输出远远小于输入,这是因为卷积核的影响,而在原始图像较小的情况下,任意丢失很多信息,这个时候我们需要使用填充解决此问题。
  • 有时,我们可能希望大幅降低图像的宽度和高度。例如,我们发现一个图像实在是太大了。这个时候使用步幅可以快速将输出变小。

1. padding

为了构建深度神经网络,你需要学会使用的一个基本的卷积操作就是padding。首先让我们来回忆一下卷积是如何计算的:

这其实有两个缺陷:

第一个是如果每一次使用一个卷积操作,我们的图像都会缩小。 例如我们从 6x6 通过一个 3x3的卷积核,做不了几次卷积,我们的图片就会变得非常小,也许它会缩小到只有1x1。

第二个缺陷是图片角落或者边际上的像素只会在输出中被使用一次 因为它只通过那个3x3的过滤器(filter)一次 然而图片中间的一个像素,会有许多3x3的过滤器(filter)在那个像素上重叠 所以相对而言 角落或者边界上的像素被使用的次数少很多,这样我们就丢失了许多图片上靠近边界的信息


所以为了同时解决上述的两个问题。我们能做的是在使用卷积操作前,对图片进行填充,通常是用0来进行填充,具体如下所示。

我们可以沿着图像边缘再填充一层像素。这样那么3×3的图像就被我们填充成了一个5×5的图像。如果你用2×2的卷积核对这个5×5的图像卷积,我们得到的输出就不是2×2,而是4×4的图像,你就得到了一个尺寸比原始图像3×3还大图像。习惯上,我们都用用0去填充,如果p是填充参数,在这个案例中,p=1,因为我们在周围都填充了一个像素点,输出也就变成了(n+2p-f+1)\times (n+2p-f+1)。所以,要是我们想要保持图像大小不变,则意味着2p-f+1=0,p=\frac{f-1}{2},在后面我们的卷积核通常会设置为奇数。

为了指定卷积操作中的padding,我们可以指定p的值。以上就是padding,下面我们讨论一下如何在卷积中设置步长。

2.步幅(stride)

卷积窗口从输入张量的左上角开始,向下、向右滑动。 在前面的例子中,我们默认每次滑动一个元素。 但是,有时候为了高效计算或是缩减采样次数,卷积窗口可以跳过中间位置,每次滑动多个元素。卷积中的步幅是另一个构建卷积神经网络的基本操作,例如,下面是一个步幅为3的情况。

 如果我们用一个f\times f的过滤器卷积一个n\times n的图像,padding为p,步幅为s,在这个例子中s=3,因为现在我们不是一次移动一个步长,而是一次移动s步,输出于是变为\left \lfloor \frac{n+2p-f}{s}+1 \right \rfloor\times \left \lfloor \frac{n+2p-f}{s}+1 \right \rfloor\left \lfloor \right \rfloor表示向下取整。

这篇关于【深度学习】卷积层填充和步幅以及其大小关系的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/369636

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件