DeepFake Learning

2023-11-08 10:20
文章标签 learning deepfake

本文主要是介绍DeepFake Learning,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Awesome-DeepFake-Learning

The approach I work on DeepFake.

  • Awesome-DeepFake-Learning
    • 1. Intuitive Learning
    • 2. Survey Paper
    • 3. Curated lists
    • 4. Deepfakes Datasets
    • 5. Generation of synthetic content
      • 5.1 Generation Text
        • ⚒️ Tools ⚒️
        • 📃 Papers 📃
        • 🌐 Webs 🌐
        • 😎 Awesome 😎
      • 5.2 Generation Audio
        • ⚒️ Tools ⚒️
        • 📃 Papers 📃
      • 5.3 Generation Images
        • ⚒️ Tools ⚒️
        • 📃 Papers 📃
        • 🌐 Webs 🌐
        • 😎 Awesome 😎
      • 5.4 Generation Videos
        • ⚒️ Tools ⚒️
        • 📃 Papers 📃
        • 🌐 Webs 🌐
        • 📺 Videos 📺
    • 6. Detection of synthetic content
      • 6.1 Detection Text
        • ⚒️ Tools ⚒️
        • 📃 Papers 📃
      • 6.2 Detection Audio
        • ⚒️ Tools ⚒️
        • 📃 Papers 📃
      • 6.3 Detection Images
        • ⚒️ Tools ⚒️
        • 📃 Papers 📃
      • 6.4 Detection Videos
        • ⚒️ Tools ⚒️
        • 📃 Papers 📃
        • 📺 Videos 📺
        • 😎 Awesome 😎
    • 7. Misc
      • Articles
      • Talks
      • Challenges
      • Forums

1. Intuitive Learning

  • News From CNN
  • 10 DeepFake Examples
  • An Introduction to DeepFakes
  • 荷兰初创公司Deeptrace发布两个年度(2018年和2019年)Deepfakes发展状况调研报告

2. Survey Paper

  • The Creation and Detection of Deepfakes: A Survey
  • Media Forensics and DeepFakes: an overview
  • DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection
  • Deep Learning for Deepfakes Creation and Detection: A Survey

3. Curated lists

  • Deep-Learning-for-Tracking-and-Detection: Collection of papers, datasets, code and other resources for object tracking and detection using deep learning

4. Deepfakes Datasets

DatasetsYearRatio
tampered:original
Total videosSourceParticipants ConsentTools
UADFV20181 : 1.0098YouTubeNFakeAPP
FaceForensics20181 : 1.002008YouTubeNFace2Face
Deepfake-TIMIT20191 : 1.00620Vid-TIMITNfaceswap-GAN
FaceForensics++20191 : 0.255000YouTubeNfaceswap
DeepFake
Face2Face
NeuralTextures
DeepFakeDetection
(part of FaceForensics++)
20191 : 0.123363ActorsY
Celeb-DF20191 : 0.511203YouTubeNa refined version of the DeepFake
DFDC Preview Dataset20191 : 0.285214ActorsYUnkonwn

5. Generation of synthetic content

5.1 Generation Text

⚒️ Tools ⚒️
NameDescriptionDemoPopularity
GroverGrover is a model for Neural Fake News – both generation and detection. However, it probably can also be used for other generation tasks.https://grover.allenai.org/stars
gpt-2xyGPT-2 User Interface based on HuggingFace’s Pytorch Implementationhttps://gpt2.ai-demo.xyz/stars
CTRLConditional Transformer Language Model for Controllable GenerationN/Astars
Talk to TransformerSee how a modern neural network completes your text. Type a custom snippet or try one of the exampleshttps://talktotransformer.comN/A
LEOFirst intelligent system for creating news in SpanishN/AN/A
Big BirdBird Bird uses State of the Art (SOTA) Natural Language Processing to aid your fact-checked and substantive content.BigBirdDemoN/A
aitextgenA robust Python tool for text-based AI training and generation using GPT-2.Demostars
GPT-3GPT-3: Language Models are Few-Shot LearnersN/Astars
📃 Papers 📃
  • Language Models are Unsupervised Multitask Learners
  • Saliency Maps Generation for Automatic Text Summarization
  • Automatic Conditional Generation of Personalized Social Media Short Texts
  • Neural Text Generation in Stories Using Entity Representations as Context
  • DeepTingle
  • GPT-3: Language Models are Few-Shot Learners
  • Evaluation of Text Generation: A Survey
🌐 Webs 🌐
  • NotRealNews
  • BotPoet
  • TheseLyricsDoNotExist
  • ThisResumeDoesNotExist
  • NotRealNews
  • ThisArtWorkDoesnotExist
  • BoredHumans
  • GPT-2 Neural Network Poetry
  • A.ttent.io
  • ThisEpisodeDoesNotExist
😎 Awesome 😎
  • awesome-text-generation
  • Awesome GPT-3

5.2 Generation Audio

⚒️ Tools ⚒️
NameDescriptionDemoPopularity
Real-Time-Voice-CloningClone a voice in 5 seconds to generate arbitrary speech in real-timehttps://www.youtube.com/watch?v=-O_hYhToKoAstars
LyrebirdCreate your own vocal avatar!N/AN/A
DescryptRecord. Transcribe. Edit. Mix. As easy as typing.N/AN/A
Common VoiceCommon Voice is Mozilla’s initiative to help teach machines how real people speak.N/AN/A
Resemble.aiResemble can clone any voice so it sounds like a real human.N/AN/A
TacoTronTacotron (/täkōˌträn/): An end-to-end speech synthesis system by Google.Demostars
SonanticCreate a captivating performance using emotionally expressive text-to-speech.DemoN/A
15.aiNatural text-to-speech synthesis with minimal data.DemoN/A
📃 Papers 📃
  • Neural Voice Cloning with a Few Samples
  • Data Efficient Voice Cloning for Neural Singing Synthesis
  • Efficient Neural Audio Synthesis
  • Score and Lyrics-free Singing Voice Generation
  • Generating diverse and natural Text-to-Speech samples using a quantized fine-grained vae and autoregressive prosody prior
  • Rave.dj

5.3 Generation Images

⚒️ Tools ⚒️
NameDescriptionDemoPopularity
StyleGANAn alternative generator architecture for generative adversarial networks, borrowing from style transfer literature. The new architecture leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic variation in the generated images (e.g., freckles, hair), and it enables intuitive, scale-specific control of the synthesis. The new generator improves the state-of-the-art in terms of traditional distribution quality metrics, leads to demonstrably better interpolation properties, and also better disentangles the latent factors of variation.https://www.youtube.com/watch?v=kSLJriaOumAstars
StyleGAN2Improved version for StyleGAN.https://www.youtube.com/watch?v=c-NJtV9Jvp0stars
DG-NetJoint Discriminative and Generative Learning for Person Re-identificationhttps://www.youtube.com/watch?v=ubCrEAIpQs4stars
GANSpaceDiscovering Interpretable GAN Controlshttp://www.exploreganspace.com/stars
StarGAN v2StarGAN v2 - Official PyTorch Implementation (CVPR 2020)https://youtu.be/0EVh5Ki4dIYstars
Image GPTImage GPTN/Astars
FQ-GANOfficial implementation of FQ-GANhttp://40.71.23.172:8888stars
EHM_FacesEHM_Faces is a machine learning project that can generate high-quality, realistic ice hockey player portraits. Primarily meant for the game Eastside Hockey Manager (EHM), this project can generate portraits either one-at-a-time or in batches (the resulting batches are called facepacks).N/Astars
Rewriting a Deep Generative ModelEdits the weights of a deep generative network by rewriting associative memory directly, without training dataDemostars
📃 Papers 📃
  • A Style-Based Generator Architecture for Generative Adversarial Networks
  • Analyzing and Improving the Image Quality of StyleGAN
  • High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs
  • Complement Face Forensic Detection and Localization with Facial Landmarks
  • Joint Discriminative and Generative Learning for Person Re-identification
  • Image2StyleGAN++: How to Edit the Embedded Images?
  • StyleGAN2 Distillation for Feed-forward Image Manipulation
  • Generative Pretraining from Pixels
  • Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image Decomposition
  • StarGAN v2: Diverse Image Synthesis for Multiple Domains
  • Feature Quantization Improves GAN Training
  • High-Resolution Neural Face Swapping for Visual Effects
  • Improving Style-Content Disentanglement in Image-to-Image Translation
  • Rewriting a Deep Generative Model
🌐 Webs 🌐
  • ThisPersonDoesNotExist
  • WhichFaceIsReal
  • ThisRentalDoesNotExist
  • ThisCatDoesNotExist
  • ThisWaifuDoesNotExist
  • thispersondoesnotexist
😎 Awesome 😎
  • Awesome Pretrained StyleGAN2

5.4 Generation Videos

⚒️ Tools ⚒️
NameDescriptionDemoPopularity
FaceSwapGrover is a model for Neural Fake News – both generation and detection. However, it probably can also be used for other generation tasks.https://www.youtube.com/watch?v=r1jng79a5xcstars
Face2FaceFaceSwap is a tool that utilizes deep learning to recognize and swap faces in pictures and videos.N/Astars
FaceswapFaceSwap is an app that I have originally created as an exercise for my students in “Mathematics in Multimedia” on the Warsaw University of Technology.N/Astars
Faceswap-GANAdding Adversarial loss and perceptual loss (VGGface) to deepfakes’(reddit user) auto-encoder architecture.https://github.com/shaoanlu/faceswap-GAN/blob/master/colab_demo/faceswap-GAN_colab_demo.ipynbstars
DeepFaceLabDeepFaceLab is a tool that utilizes machine learning to replace faces in videos.https://www.youtube.com/watch?v=um7q–QEkg4stars
Vid2VidPytorch implementation for high-resolution (e.g., 2048x1024) photorealistic video-to-video translation.https://www.youtube.com/watch?v=5zlcXTCpQqMstars
DFakerPytorch implementation for high-resolution (e.g., 2048x1024) photorealistic video-to-video translation.N/Astars
Image AnimationThe videos on the left show the driving videos. The first row on the right for each dataset shows the source videos.https://www.youtube.com/watch?v=mUfJOQKdtAkstars
AvatarifyPhotorealistic avatars for Skype and Zoom. Democratized. Based on First Order Motion Model…https://www.youtube.com/watch?v=lONuXGNqLO0stars
Speech driven animationThis library implements the end-to-end facial synthesis model.N/Astars
📃 Papers 📃
  • HeadOn: Real-time Reenactment of Human Portrait Videos
  • Face2Face: Real-time Face Capture and Reenactment of RGB Videos
  • Synthesizing Obama: Learning Lip Sync from Audio
  • The Creation and Detection of Deepfakes: A Survey
🌐 Webs 🌐
  • DeepFake中文网 🇨🇳
  • Website for creating deepfake videos with learning
  • Deep Fakes Net - Deepfakes Network
  • Faceswap is the leading free and Open Source multi-platform Deepfakes software
  • Fakening
  • DeepFakesWeb
📺 Videos 📺
  • How to Animate Image with a Video

6. Detection of synthetic content

6.1 Detection Text

⚒️ Tools ⚒️
NameDescriptionDemoPopularity
GroverGrover is a model for Neural Fake News – both generation and detection. However, it probably can also be used for other generation tasks.https://grover.allenai.org/stars
GLTRDetecting text that was generated from large language models (e.g. GPT-2).http://gltr.io/dist/index.htmlstars
fake news detectionIn this project, we aim to build state-of-the-art deep learning models to detect fake news based on the content of article itself.Demostars
GPTrue or FalseDisplay the likelihood that a sample of text was generated by OpenAI’s GPT-2 model.N/AN/A
📃 Papers 📃
  • GLTR: Statistical Detection and Visualization of Generated Text
  • Human and Automatic Detection of Generated Text
  • CTRL: A Conditional Transformer Language Model for Controllable Generation
  • The Limitations of Stylometry for Detecting Machine-Generated Fake News

6.2 Detection Audio

⚒️ Tools ⚒️
NameDescriptionDemoPopularity
Spooded speech detectionThis work is part of the “DDoS Resilient Emergency Dispatch Center” project at the University of Houston, funded by the Department of Homeland Security (DHS).N/Astars
Fake voice detectionThis repository provides the code for a fake audio detection model built using Foundations Atlas. It also includes a pre-trained model and inference code, which you can test on any of your own audio files.N/Astars
Fake Voice DetectorFor “Deep Learning class” at ETHZ. Evaluate how well the fake voice of Barack Obama 1. confuses the voice verification system, 2. can be detected.N/Astars
CycleGAN Voice ConverterAn implementation of CycleGAN on human speech conversionshttps://leimao.github.io/project/Voice-Converter-CycleGAN/stars
📃 Papers 📃
  • Can We Detect Fake Voice Generated by GANs?
  • CycleGAN Voice Converter
  • The Rise of Synthetic Audio Deepfakes

6.3 Detection Images

⚒️ Tools ⚒️
NameDescriptionDemoPopularity
FALdetectorDetecting Photoshopped Faces by Scripting Photoshop.https://www.youtube.com/watch?v=TUootD36Xm0stars
📃 Papers 📃
  • Detecting Photoshopped Faces by Scripting Photoshop

6.4 Detection Videos

⚒️ Tools ⚒️
NameDescriptionDemoPopularity
FaceForensics++FaceForensics++ is a forensics dataset consisting of 1000 original video sequences that have been manipulated with four automated face manipulation methods: Deepfakes, Face2Face, FaceSwap and NeuralTextures.https://www.youtube.com/watch?v=x2g48Q2I2ZQstars
Face ArtifactsOur method is based on the observations that current DeepFake algorithm can only generate images of limited resolutions, which need to be further warped to match the original faces in the source video.N/Astars
DeepFake-DetectionOur Pytorch implementation, conducts extensive experiments to demonstrate that the datasets produced by Google and detailed in the FaceForensics++ paper are not sufficient for making neural networks generalize to detect real-life face manipulation techniques.http://deepfake-detection.dessa.com/projectsstars
Capsule-Forensics-v2Implementation of the paper: Use of a Capsule Network to Detect Fake Images and Videos.N/Astars
ClassNSegImplementation of the paper: Multi-task Learning for Detecting and Segmenting Manipulated Facial Images and Videos (BTAS 2019).N/Astars
fakeVideoForensicsFake video detectorhttps://www.youtube.com/watch?v=8YYRT4lzQgY[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Ka08jQIx-1599098979903)(https://badgen.net/github/stars/next-security-lab/fakeVideoForensics)]
📃 Papers 📃
  • Exposing DeepFake Videos By Detecting Face Warping Artifacts
  • DeepFakes: a New Threat to Face Recognition? Assessment and Detection
  • FaceForensics++: Learning to Detect Manipulated Facial Images
  • Deepfake Video Detection Using Recurrent Neural Networks
  • Deep Learning for Deepfakes Creation and Detection: A Survey
  • Protecting World Leaders Against Deep Fakes
  • Capsule-Forensics: Using Capsule Networks to Detect Forged Images and Videos
  • DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection
  • Media Forensics and DeepFakes:
    an overview
  • Everybody’s Talkin’: Let Me Talk as You Want
  • FSGAN: Subject Agnostic Face Swapping and Reenactment
  • Celeb-DF (v2): A New Dataset for DeepFake Forensics
  • Deepfake Video Detection through Optical Flow based CNN
  • MesoNet: a Compact Facial Video Forgery Detection Network
  • Adversarial Deepfakes
  • One-Shot GAN Generated Fake Face Detection
  • Evading Deepfake-Image Detectors with White- and Black-Box Attacks
  • Deepfakes Detection with Automatic Face Weighting
  • Unmasking DeepFakes with simple Features
  • VideoForensicsHQ: Detecting High-quality Manipulated Face Videos
  • Disrupting Deepfakes: Adversarial Attacks Against Conditional Image Translation Networks and Facial Manipulation Systems
  • Detecting Deepfake Videos: An Analysis of Three Techniques
  • OC-FakeDect: Classifying Deepfakes Using One-class Variational Autoencoder
📺 Videos 📺
  • Deepfake Detection using LSTM and ResNext CNN
  • End-To-End AI Video Generation To Bring Fake Humans To Life
  • DeepFake Cyber Security Threats And Opportunities - Matt Lewis
😎 Awesome 😎
  • Awesome-Deepfakes-Materials

7. Misc

Articles

  • 2020 Guide to Synthetic Media
  • Machine Learning Experiments
  • Building rules in public: Our approach to synthetic & manipulated media
  • Contenido Sintético (parte I): generación y detección de audio y texto 🇪🇸
  • Contenido Sintético (parte II): generación y detección de imagenes 🇪🇸
  • Contenido Sintético (parte III): generación y detección de vídeo 🇪🇸
  • Fake Candidate
  • Unraveling the mystery around deepfakes
  • Cyber-Security implications of deepfakes
  • Deepfake Detection Challenge Results: An open initiative to advance AI
  • The Synthetic Media Landscape
  • Do (Microtargeted) Deepfakes Have Real Effects on Political Attitudes?

Talks

  • ICML 2019 Synthetic Realities
  • CCN-CERT: Automatizando la detección de contenido Deep Fake 🇪🇸
  • TED Talk: Fake videos of real people
  • Hacking with Skynet
  • RSA: Deep Fakes Are Getting Terrifyingly Real
  • CVPR 2020 Workshop on media forensics

Challenges

  • NIST: Media Forensics Challenge 2019
  • ASVspoof: Automatic Speaker Verification
  • Kaggle: DeepFake Detection Challenge
  • Fake News Challenge
  • Xente: Fraud detection challenge
  • Chalearn Multi-modal Cross-ethnicity Face anti-spoofing Recognition Challenge

Forums

  • Reddit: MediaSynthesis
  • Reddit: Digital Manipulation
  • MrDeepFake Forums 🔞
  • AIVillage

More avaliable: Link

这篇关于DeepFake Learning的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/369195

相关文章

简单的Q-learning|小明的一维世界(3)

简单的Q-learning|小明的一维世界(1) 简单的Q-learning|小明的一维世界(2) 一维的加速度世界 这个世界,小明只能控制自己的加速度,并且只能对加速度进行如下三种操作:增加1、减少1、或者不变。所以行动空间为: { u 1 = − 1 , u 2 = 0 , u 3 = 1 } \{u_1=-1, u_2=0, u_3=1\} {u1​=−1,u2​=0,u3​=1}

简单的Q-learning|小明的一维世界(2)

上篇介绍了小明的一维世界模型 、Q-learning的状态空间、行动空间、奖励函数、Q-table、Q table更新公式、以及从Q值导出策略的公式等。最后给出最简单的一维位置世界的Q-learning例子,从给出其状态空间、行动空间、以及稠密与稀疏两种奖励函数的设置方式。下面将继续深入,GO! 一维的速度世界 这个世界,小明只能控制自己的速度,并且只能对速度进行如下三种操作:增加1、减

Learning Memory-guided Normality for Anomaly Detection——学习记忆引导的常态异常检测

又是一篇在自编码器框架中研究使用记忆模块的论文,可以看做19年的iccv的论文的衍生,在我的博客中对19年iccv这篇论文也做了简单介绍。韩国人写的,应该是吧,这名字听起来就像。 摘要abstract 我们解决异常检测的问题,即检测视频序列中的异常事件。基于卷积神经网络的异常检测方法通常利用代理任务(如重建输入视频帧)来学习描述正常情况的模型,而在训练时看不到异常样本,并在测试时使用重建误

Learning Temporal Regularity in Video Sequences——视频序列的时间规则性学习

Learning Temporal Regularity in Video Sequences CVPR2016 无监督视频异常事件检测早期工作 摘要 由于对“有意义”的定义不明确以及场景混乱,因此在较长的视频序列中感知有意义的活动是一个具有挑战性的问题。我们通过在非常有限的监督下使用多种来源学习常规运动模式的生成模型(称为规律性)来解决此问题。体来说,我们提出了两种基于自动编码器的方法,以

COD论文笔记 Adaptive Guidance Learning for Camouflaged Object Detection

论文的主要动机、现有方法的不足、拟解决的问题、主要贡献和创新点如下: 动机: 论文的核心动机是解决伪装目标检测(COD)中的挑战性任务。伪装目标检测旨在识别和分割那些在视觉上与周围环境高度相似的目标,这对于计算机视觉来说是非常困难的任务。尽管深度学习方法在该领域取得了一定进展,但现有方法仍面临有效分离目标和背景的难题,尤其是在伪装目标与背景特征高度相似的情况下。 现有方法的不足之处: 过于

One-Shot Imitation Learning

发表时间:NIPS2017 论文链接:https://readpaper.com/pdf-annotate/note?pdfId=4557560538297540609&noteId=2424799047081637376 作者单位:Berkeley AI Research Lab, Work done while at OpenAI Yan Duan†§ , Marcin Andrychow

Introduction to Deep Learning with PyTorch

1、Introduction to PyTorch, a Deep Learning Library 1.1、Importing PyTorch and related packages import torch# supports:## image data with torchvision## audio data with torchaudio## text data with t

《Learning To Count Everything》CVPR2021

摘要 论文提出了一种新的方法来解决视觉计数问题,即在给定类别中仅有少量标注实例的情况下,对任何类别的对象进行计数。将计数问题视为一个少样本回归任务,并提出了一种新颖的方法,该方法通过查询图像和查询图像中的少量示例对象来预测图像中所有感兴趣对象的存在密度图。此外,还提出了一种新颖的适应策略,使网络能够在测试时仅使用新类别中的少量示例对象来适应任何新的视觉类别。为了支持这一任务,作者还引入了一个包含

One-Shot Imitation Learning with Invariance Matching for Robotic Manipulation

发表时间:5 Jun 2024 论文链接:https://readpaper.com/pdf-annotate/note?pdfId=2408639872513958656&noteId=2408640378699078912 作者单位:Rutgers University Motivation:学习一个通用的policy,可以执行一组不同的操作任务,是机器人技术中一个有前途的新方向。然而,

MaPLe(论文解读): Multi-modal Prompt Learning

Comment: Accepted at CVPR2023 摘要 预训练的视觉语言模型(VL-PTMs)(比如CLIP)在下游任务中已经表现出不错的泛化能力。但是它们对输入文本提示模板的选择很敏感,需要仔细选择提示模板才能表现良好。 受到NLP领域的启发,最近的CLIP的自适应性方法开始学习提示作为文本输入,来微调CLIP以适应下游任务。本文能注意到,在CLIP的单个分支(语言或图像分支)中