AX7A200教程(2): DDR3仿真平台搭建(二)

2023-11-07 21:50

本文主要是介绍AX7A200教程(2): DDR3仿真平台搭建(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本章主要新建ddr3工程,然后将官方的ddr3仿真文件加入到工程里进行仿真,开发环境2020.1。

新建ddr3_test工程

新建ddr3工程顶层

新建的ddr3_top顶层文件,目前还是空白的

调用mig控制器,请参考我上一个章节,这里不在具体写调用过程

AX7A200教程(1):DDR3仿真平台搭建(一)

工程里调用mig控制器,如下图所示

将mig控制器例化到ddr3_top顶层

`timescale 1ns / 1ps
//
// Company: 
// Engineer: 
// 
// Create Date: 2023/01/20 20:24:41
// Design Name: 
// Module Name: ddr3_top
// Project Name: 
// Target Devices: 
// Tool Versions: 
// Description: 
// 
// Dependencies: 
// 
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
// 
//module ddr3_top(//clockinput               sys_clk_i,//200M//resetinput               sys_rst,// Inoutsinout [31:0]         ddr3_dq,inout [3:0]          ddr3_dqs_n,inout [3:0]          ddr3_dqs_p,// Outputsoutput [14:0]        ddr3_addr,output [2:0]         ddr3_ba,output               ddr3_ras_n,output               ddr3_cas_n,output               ddr3_we_n,output               ddr3_reset_n,output [0:0]         ddr3_ck_p,output [0:0]         ddr3_ck_n,output [0:0]         ddr3_cke,output [0:0]         ddr3_cs_n,   output [3:0]         ddr3_dm,output [0:0]         ddr3_odt);wire [28:0]                           app_addr;               //DDR3地址wire [2:0]                            app_cmd;                //MIG IP核操作命令,读或者写wire                                  app_en;                 //MIG IP发送命令使能wire                                  app_rdy;                //MIG 命令接收准备好标志wire [255:0]                          app_rd_data;            //用户读数据wire                                  app_rd_data_end;        //突发读当前时钟最后一个数据wire                                  app_rd_data_valid;      //读数据有效wire [255:0]                          app_wdf_data;           //用户写数据wire                                  app_wdf_end;            //突发写当前时钟最后一个数据wire [31:0]                           app_wdf_mask;wire                                  app_wdf_rdy;            //MIG数据接收准备好wire                                  app_sr_active;wire                                  app_ref_ack;wire                                  app_zq_ack;wire                                  app_wdf_wren;    wire                                  ui_clk;                //用户时钟wire                                  ui_clk_sync_rst;       //复位,高有效mig_7series_0 u_mig_7series_0 (// Memory interface ports.ddr3_addr                      (ddr3_addr),  // output [14:0]        ddr3_addr.ddr3_ba                        (ddr3_ba),  // output [2:0]        ddr3_ba.ddr3_cas_n                     (ddr3_cas_n),  // output            ddr3_cas_n.ddr3_ck_n                      (ddr3_ck_n),  // output [0:0]        ddr3_ck_n.ddr3_ck_p                      (ddr3_ck_p),  // output [0:0]        ddr3_ck_p.ddr3_cke                       (ddr3_cke),  // output [0:0]        ddr3_cke.ddr3_ras_n                     (ddr3_ras_n),  // output            ddr3_ras_n.ddr3_reset_n                   (ddr3_reset_n),  // output            ddr3_reset_n.ddr3_we_n                      (ddr3_we_n),  // output            ddr3_we_n.ddr3_dq                        (ddr3_dq),  // inout [31:0]        ddr3_dq.ddr3_dqs_n                     (ddr3_dqs_n),  // inout [3:0]        ddr3_dqs_n.ddr3_dqs_p                     (ddr3_dqs_p),  // inout [3:0]        ddr3_dqs_p.init_calib_complete            (init_calib_complete),  // output            init_calib_complete.ddr3_cs_n                      (ddr3_cs_n),  // output [0:0]        ddr3_cs_n.ddr3_dm                        (ddr3_dm),  // output [3:0]        ddr3_dm.ddr3_odt                       (ddr3_odt),  // output [0:0]        ddr3_odt// Application interface ports.app_addr                       (app_addr),  // input [28:0]        app_addr.app_cmd                        (app_cmd),  // input [2:0]        app_cmd.app_en                         (app_en),  // input                app_en.app_wdf_data                   (app_wdf_data),  // input [255:0]        app_wdf_data.app_wdf_end                    (app_wdf_end),  // input                app_wdf_end.app_wdf_wren                   (app_wdf_wren),  // input                app_wdf_wren.app_rd_data                    (app_rd_data),  // output [255:0]        app_rd_data.app_rd_data_end                (app_rd_data_end),  // output            app_rd_data_end.app_rd_data_valid              (app_rd_data_valid),  // output            app_rd_data_valid.app_rdy                        (app_rdy),  // output            app_rdy.app_wdf_rdy                    (app_wdf_rdy),  // output            app_wdf_rdy.app_sr_req                     (1'b0),  // input            app_sr_req.app_ref_req                    (1'b0),  // input            app_ref_req.app_zq_req                     (1'b0),  // input            app_zq_req.app_sr_active                  (app_sr_active),  // output            app_sr_active.app_ref_ack                    (app_ref_ack),  // output            app_ref_ack.app_zq_ack                     (app_zq_ack),  // output            app_zq_ack.ui_clk                         (ui_clk),  // output            ui_clk.ui_clk_sync_rst                (ui_clk_sync_rst),  // output            ui_clk_sync_rst.app_wdf_mask                   (32'd0),  // input [31:0]        app_wdf_mask// System Clock Ports.sys_clk_i                      (sys_clk_i),.sys_rst                        (sys_rst) // input sys_rst);    
endmodule

在这里往后都比较复杂,务必按照步骤来做,目前这种仿真ddr3的方法csdn上没有,但这种方式仿真不容易出错,但搭建起来比较麻烦

在我上篇博客中提到,xilinx官方提供了mig控制器的仿真脚本,那么现在我们就将上篇博客工程中的仿真文件,导入到这个新建的ddr3工程的仿真目录里面,上篇博客里的仿真文件如下图所示,但我们只需导入部分文件即可

找到xlinx官方的仿真路径下的文件,如下图所示

复制我选中的这五个文件,复制到我们现在新建的这个工程下面

复制到工程文件夹里面

点击“+”加入仿真文件

选择加入仿真文件

选择Add Files加入文件

选择这五个文件,点击OK加入进去

点击Finish,加入到仿真目录下

可以看到仿真目录sim也出现了官方提供的仿真文件

修改example_top文件,也就是红框选择的这个文件

修改后的example_top文件

//*****************************************************************************// (c) Copyright 2009 - 2013 Xilinx, Inc. All rights reserved.//// This file contains confidential and proprietary information// of Xilinx, Inc. and is protected under U.S. and// international copyright and other intellectual property// laws.//// DISCLAIMER// This disclaimer is not a license and does not grant any// rights to the materials distributed herewith. Except as// otherwise provided in a valid license issued to you by// Xilinx, and to the maximum extent permitted by applicable// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and// (2) Xilinx shall not be liable (whether in contract or tort,// including negligence, or under any other theory of// liability) for any loss or damage of any kind or nature// related to, arising under or in connection with these// materials, including for any direct, or any indirect,// special, incidental, or consequential loss or damage// (including loss of data, profits, goodwill, or any type of// loss or damage suffered as a result of any action brought// by a third party) even if such damage or loss was// reasonably foreseeable or Xilinx had been advised of the// possibility of the same.//// CRITICAL APPLICATIONS// Xilinx products are not designed or intended to be fail-// safe, or for use in any application requiring fail-safe// performance, such as life-support or safety devices or// systems, Class III medical devices, nuclear facilities,// applications related to the deployment of airbags, or any// other applications that could lead to death, personal// injury, or severe property or environmental damage// (individually and collectively, "Critical// Applications"). Customer assumes the sole risk and// liability of any use of Xilinx products in Critical// Applications, subject only to applicable laws and// regulations governing limitations on product liability.//// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS// PART OF THIS FILE AT ALL TIMES.////*****************************************************************************//   ____  ____//  /   /\/   /// /___/  \  /    Vendor             : Xilinx// \   \   \/     Version            : 4.2//  \   \         Application        : MIG//  /   /         Filename           : example_top.v// /___/   /\     Date Last Modified : $Date: 2011/06/02 08:35:03 $// \   \  /  \    Date Created       : Tue Sept 21 2010//  \___\/\___\//// Device           : 7 Series// Design Name      : DDR3 SDRAM// Purpose          ://   Top-level  module. This module serves as an example,//   and allows the user to synthesize a self-contained design,//   which they can be used to test their hardware.//   In addition to the memory controller, the module instantiates://     1. Synthesizable testbench - used to model user's backend logic//        and generate different traffic patterns// Reference        :// Revision History ://*****************************************************************************//`define SKIP_CALIB`timescale 1ps/1psmodule example_top #(//***************************************************************************// Traffic Gen related parameters//***************************************************************************parameter PORT_MODE             = "BI_MODE",parameter DATA_MODE             = 4'b0010,parameter TST_MEM_INSTR_MODE    = "R_W_INSTR_MODE",parameter EYE_TEST              = "FALSE",// set EYE_TEST = "TRUE" to probe memory// signals. Traffic Generator will only// write to one single location and no// read transactions will be generated.parameter DATA_PATTERN          = "DGEN_ALL",// For small devices, choose one only.// For large device, choose "DGEN_ALL"// "DGEN_HAMMER", "DGEN_WALKING1",// "DGEN_WALKING0","DGEN_ADDR","// "DGEN_NEIGHBOR","DGEN_PRBS","DGEN_ALL"parameter CMD_PATTERN           = "CGEN_ALL",// "CGEN_PRBS","CGEN_FIXED","CGEN_BRAM",// "CGEN_SEQUENTIAL", "CGEN_ALL"parameter CMD_WDT               = 'h3FF,parameter WR_WDT                = 'h1FFF,parameter RD_WDT                = 'h3FF,parameter SEL_VICTIM_LINE       = 0,parameter BEGIN_ADDRESS         = 32'h00000000,parameter END_ADDRESS           = 32'h00ffffff,parameter PRBS_EADDR_MASK_POS   = 32'hff000000,//***************************************************************************// The following parameters refer to width of various ports//***************************************************************************parameter CK_WIDTH              = 1,// # of CK/CK# outputs to memory.parameter nCS_PER_RANK          = 1,// # of unique CS outputs per rank for phyparameter CKE_WIDTH             = 1,// # of CKE outputs to memory.parameter DM_WIDTH              = 4,// # of DM (data mask)parameter ODT_WIDTH             = 1,// # of ODT outputs to memory.parameter BANK_WIDTH            = 3,// # of memory Bank Address bits.parameter COL_WIDTH             = 10,// # of memory Column Address bits.parameter CS_WIDTH              = 1,// # of unique CS outputs to memory.parameter DQ_WIDTH              = 32,// # of DQ (data)parameter DQS_WIDTH             = 4,parameter DQS_CNT_WIDTH         = 2,// = ceil(log2(DQS_WIDTH))parameter DRAM_WIDTH            = 8,// # of DQ per DQSparameter ECC                   = "OFF",parameter ECC_TEST              = "OFF",//parameter nBANK_MACHS           = 4,parameter nBANK_MACHS           = 4,parameter RANKS                 = 1,// # of Ranks.parameter ROW_WIDTH             = 15,// # of memory Row Address bits.parameter ADDR_WIDTH            = 29,// # = RANK_WIDTH + BANK_WIDTH//     + ROW_WIDTH + COL_WIDTH;// Chip Select is always tied to low for// single rank devices//***************************************************************************// The following parameters are mode register settings//***************************************************************************parameter BURST_MODE            = "8",// DDR3 SDRAM:// Burst Length (Mode Register 0).// # = "8", "4", "OTF".// DDR2 SDRAM:// Burst Length (Mode Register).// # = "8", "4".//***************************************************************************// The following parameters are multiplier and divisor factors for PLLE2.// Based on the selected design frequency these parameters vary.//***************************************************************************parameter CLKIN_PERIOD          = 5000,// Input Clock Periodparameter CLKFBOUT_MULT         = 4,// write PLL VCO multiplierparameter DIVCLK_DIVIDE         = 1,// write PLL VCO divisorparameter CLKOUT0_PHASE         = 0.0,// Phase for PLL output clock (CLKOUT0)parameter CLKOUT0_DIVIDE        = 1,// VCO output divisor for PLL output clock (CLKOUT0)parameter CLKOUT1_DIVIDE        = 2,// VCO output divisor for PLL output clock (CLKOUT1)parameter CLKOUT2_DIVIDE        = 32,// VCO output divisor for PLL output clock (CLKOUT2)parameter CLKOUT3_DIVIDE        = 8,// VCO output divisor for PLL output clock (CLKOUT3)parameter MMCM_VCO              = 800,// Max Freq (MHz) of MMCM VCOparameter MMCM_MULT_F           = 8,// write MMCM VCO multiplierparameter MMCM_DIVCLK_DIVIDE    = 1,// write MMCM VCO divisor//***************************************************************************// Simulation parameters//***************************************************************************parameter SIMULATION            = "FALSE",// Should be TRUE during design simulations and// FALSE during implementations//***************************************************************************// IODELAY and PHY related parameters//***************************************************************************parameter TCQ                   = 100,parameter DRAM_TYPE             = "DDR3",//***************************************************************************// System clock frequency parameters//***************************************************************************parameter nCK_PER_CLK           = 4,// # of memory CKs per fabric CLK//***************************************************************************// Debug parameters//***************************************************************************parameter DEBUG_PORT            = "OFF",// # = "ON" Enable debug signals/controls.//   = "OFF" Disable debug signals/controls.parameter RST_ACT_LOW           = 1// =1 for active low reset,// =0 for active high.)(// Inoutsinout [31:0]                         ddr3_dq,inout [3:0]                        ddr3_dqs_n,inout [3:0]                        ddr3_dqs_p,// Outputsoutput [14:0]                       ddr3_addr,output [2:0]                      ddr3_ba,output                                       ddr3_ras_n,output                                       ddr3_cas_n,output                                       ddr3_we_n,output                                       ddr3_reset_n,output [0:0]                        ddr3_ck_p,output [0:0]                        ddr3_ck_n,output [0:0]                       ddr3_cke,output [0:0]           ddr3_cs_n,output [3:0]                        ddr3_dm,output [0:0]                       ddr3_odt,// Inputs// Single-ended system clockinput                                        sys_clk_i,output                                       tg_compare_error,output                                       init_calib_complete,// System reset - Default polarity of sys_rst pin is Active Low.// System reset polarity will change based on the option // selected in GUI.input                                        sys_rst);function integer clogb2 (input integer size);beginsize = size - 1;for (clogb2=1; size>1; clogb2=clogb2+1)size = size >> 1;endendfunction // clogb2function integer STR_TO_INT;input [7:0] in;beginif(in == "8")STR_TO_INT = 8;else if(in == "4")STR_TO_INT = 4;elseSTR_TO_INT = 0;endendfunctionlocalparam DATA_WIDTH            = 32;localparam RANK_WIDTH = clogb2(RANKS);localparam PAYLOAD_WIDTH         = (ECC_TEST == "OFF") ? DATA_WIDTH : DQ_WIDTH;localparam BURST_LENGTH          = STR_TO_INT(BURST_MODE);localparam APP_DATA_WIDTH        = 2 * nCK_PER_CLK * PAYLOAD_WIDTH;localparam APP_MASK_WIDTH        = APP_DATA_WIDTH / 8;//***************************************************************************// Traffic Gen related parameters (derived)//***************************************************************************localparam  TG_ADDR_WIDTH = ((CS_WIDTH == 1) ? 0 : RANK_WIDTH)+ BANK_WIDTH + ROW_WIDTH + COL_WIDTH;localparam MASK_SIZE             = DATA_WIDTH/8;// Wire declarationswire [(2*nCK_PER_CLK)-1:0]              app_ecc_multiple_err;wire [(2*nCK_PER_CLK)-1:0]              app_ecc_single_err;wire [ADDR_WIDTH-1:0]                 app_addr;wire [2:0]                            app_cmd;wire                                  app_en;wire                                  app_rdy;wire [APP_DATA_WIDTH-1:0]             app_rd_data;wire                                  app_rd_data_end;wire                                  app_rd_data_valid;wire [APP_DATA_WIDTH-1:0]             app_wdf_data;wire                                  app_wdf_end;wire [APP_MASK_WIDTH-1:0]             app_wdf_mask;wire                                  app_wdf_rdy;wire                                  app_sr_active;wire                                  app_ref_ack;wire                                  app_zq_ack;wire                                  app_wdf_wren;wire [(64+(2*APP_DATA_WIDTH))-1:0]      error_status;wire [(PAYLOAD_WIDTH/8)-1:0] cumlative_dq_lane_error;wire                                  mem_pattern_init_done;wire [47:0]                           tg_wr_data_counts;wire [47:0]                           tg_rd_data_counts;wire                                  modify_enable_sel;wire [2:0]                            data_mode_manual_sel;wire [2:0]                            addr_mode_manual_sel;wire [APP_DATA_WIDTH-1:0]             cmp_data;reg [63:0]                            cmp_data_r;wire                                  cmp_data_valid;reg                                   cmp_data_valid_r;wire                                  cmp_error;wire [(PAYLOAD_WIDTH/8)-1:0]            dq_error_bytelane_cmp;wire                                  clk;wire                                  rst;wire                                  dbg_sel_pi_incdec;wire                                  dbg_pi_f_inc;wire                                  dbg_pi_f_dec;wire                                  dbg_sel_po_incdec;wire                                  dbg_po_f_inc;wire                                  dbg_po_f_stg23_sel;wire                                  dbg_po_f_dec;wire                                  vio_modify_enable;wire [3:0]                            vio_data_mode_value;wire                                  vio_pause_traffic;wire [2:0]                            vio_addr_mode_value;wire [3:0]                            vio_instr_mode_value;wire [1:0]                            vio_bl_mode_value;wire [9:0]                            vio_fixed_bl_value;wire [2:0]                            vio_fixed_instr_value;wire                                  vio_data_mask_gen;wire                                  vio_tg_rst;wire                                  vio_dbg_sel_pi_incdec;wire                                  vio_dbg_pi_f_inc;wire                                  vio_dbg_pi_f_dec;wire                                  vio_dbg_sel_po_incdec;wire                                  vio_dbg_po_f_inc;wire                                  vio_dbg_po_f_stg23_sel;wire                                  vio_dbg_po_f_dec;wire [11:0]                           device_temp;`ifdef SKIP_CALIB// skip calibration wireswire                          calib_tap_req;reg                           calib_tap_load;reg [6:0]                     calib_tap_addr;reg [7:0]                     calib_tap_val;reg                           calib_tap_load_done;`endif//***************************************************************************endmodule

修改example_top文件后,sim目录如下图所示

将我们新建的ddr3_top顶层例化到example_top文件里面,如下所示

//*****************************************************************************// (c) Copyright 2009 - 2013 Xilinx, Inc. All rights reserved.//// This file contains confidential and proprietary information// of Xilinx, Inc. and is protected under U.S. and// international copyright and other intellectual property// laws.//// DISCLAIMER// This disclaimer is not a license and does not grant any// rights to the materials distributed herewith. Except as// otherwise provided in a valid license issued to you by// Xilinx, and to the maximum extent permitted by applicable// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and// (2) Xilinx shall not be liable (whether in contract or tort,// including negligence, or under any other theory of// liability) for any loss or damage of any kind or nature// related to, arising under or in connection with these// materials, including for any direct, or any indirect,// special, incidental, or consequential loss or damage// (including loss of data, profits, goodwill, or any type of// loss or damage suffered as a result of any action brought// by a third party) even if such damage or loss was// reasonably foreseeable or Xilinx had been advised of the// possibility of the same.//// CRITICAL APPLICATIONS// Xilinx products are not designed or intended to be fail-// safe, or for use in any application requiring fail-safe// performance, such as life-support or safety devices or// systems, Class III medical devices, nuclear facilities,// applications related to the deployment of airbags, or any// other applications that could lead to death, personal// injury, or severe property or environmental damage// (individually and collectively, "Critical// Applications"). Customer assumes the sole risk and// liability of any use of Xilinx products in Critical// Applications, subject only to applicable laws and// regulations governing limitations on product liability.//// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS// PART OF THIS FILE AT ALL TIMES.////*****************************************************************************//   ____  ____//  /   /\/   /// /___/  \  /    Vendor             : Xilinx// \   \   \/     Version            : 4.2//  \   \         Application        : MIG//  /   /         Filename           : example_top.v// /___/   /\     Date Last Modified : $Date: 2011/06/02 08:35:03 $// \   \  /  \    Date Created       : Tue Sept 21 2010//  \___\/\___\//// Device           : 7 Series// Design Name      : DDR3 SDRAM// Purpose          ://   Top-level  module. This module serves as an example,//   and allows the user to synthesize a self-contained design,//   which they can be used to test their hardware.//   In addition to the memory controller, the module instantiates://     1. Synthesizable testbench - used to model user's backend logic//        and generate different traffic patterns// Reference        :// Revision History ://*****************************************************************************//`define SKIP_CALIB`timescale 1ps/1psmodule example_top #(//***************************************************************************// Traffic Gen related parameters//***************************************************************************parameter PORT_MODE             = "BI_MODE",parameter DATA_MODE             = 4'b0010,parameter TST_MEM_INSTR_MODE    = "R_W_INSTR_MODE",parameter EYE_TEST              = "FALSE",// set EYE_TEST = "TRUE" to probe memory// signals. Traffic Generator will only// write to one single location and no// read transactions will be generated.parameter DATA_PATTERN          = "DGEN_ALL",// For small devices, choose one only.// For large device, choose "DGEN_ALL"// "DGEN_HAMMER", "DGEN_WALKING1",// "DGEN_WALKING0","DGEN_ADDR","// "DGEN_NEIGHBOR","DGEN_PRBS","DGEN_ALL"parameter CMD_PATTERN           = "CGEN_ALL",// "CGEN_PRBS","CGEN_FIXED","CGEN_BRAM",// "CGEN_SEQUENTIAL", "CGEN_ALL"parameter CMD_WDT               = 'h3FF,parameter WR_WDT                = 'h1FFF,parameter RD_WDT                = 'h3FF,parameter SEL_VICTIM_LINE       = 0,parameter BEGIN_ADDRESS         = 32'h00000000,parameter END_ADDRESS           = 32'h00ffffff,parameter PRBS_EADDR_MASK_POS   = 32'hff000000,//***************************************************************************// The following parameters refer to width of various ports//***************************************************************************parameter CK_WIDTH              = 1,// # of CK/CK# outputs to memory.parameter nCS_PER_RANK          = 1,// # of unique CS outputs per rank for phyparameter CKE_WIDTH             = 1,// # of CKE outputs to memory.parameter DM_WIDTH              = 4,// # of DM (data mask)parameter ODT_WIDTH             = 1,// # of ODT outputs to memory.parameter BANK_WIDTH            = 3,// # of memory Bank Address bits.parameter COL_WIDTH             = 10,// # of memory Column Address bits.parameter CS_WIDTH              = 1,// # of unique CS outputs to memory.parameter DQ_WIDTH              = 32,// # of DQ (data)parameter DQS_WIDTH             = 4,parameter DQS_CNT_WIDTH         = 2,// = ceil(log2(DQS_WIDTH))parameter DRAM_WIDTH            = 8,// # of DQ per DQSparameter ECC                   = "OFF",parameter ECC_TEST              = "OFF",//parameter nBANK_MACHS           = 4,parameter nBANK_MACHS           = 4,parameter RANKS                 = 1,// # of Ranks.parameter ROW_WIDTH             = 15,// # of memory Row Address bits.parameter ADDR_WIDTH            = 29,// # = RANK_WIDTH + BANK_WIDTH//     + ROW_WIDTH + COL_WIDTH;// Chip Select is always tied to low for// single rank devices//***************************************************************************// The following parameters are mode register settings//***************************************************************************parameter BURST_MODE            = "8",// DDR3 SDRAM:// Burst Length (Mode Register 0).// # = "8", "4", "OTF".// DDR2 SDRAM:// Burst Length (Mode Register).// # = "8", "4".//***************************************************************************// The following parameters are multiplier and divisor factors for PLLE2.// Based on the selected design frequency these parameters vary.//***************************************************************************parameter CLKIN_PERIOD          = 5000,// Input Clock Periodparameter CLKFBOUT_MULT         = 4,// write PLL VCO multiplierparameter DIVCLK_DIVIDE         = 1,// write PLL VCO divisorparameter CLKOUT0_PHASE         = 0.0,// Phase for PLL output clock (CLKOUT0)parameter CLKOUT0_DIVIDE        = 1,// VCO output divisor for PLL output clock (CLKOUT0)parameter CLKOUT1_DIVIDE        = 2,// VCO output divisor for PLL output clock (CLKOUT1)parameter CLKOUT2_DIVIDE        = 32,// VCO output divisor for PLL output clock (CLKOUT2)parameter CLKOUT3_DIVIDE        = 8,// VCO output divisor for PLL output clock (CLKOUT3)parameter MMCM_VCO              = 800,// Max Freq (MHz) of MMCM VCOparameter MMCM_MULT_F           = 8,// write MMCM VCO multiplierparameter MMCM_DIVCLK_DIVIDE    = 1,// write MMCM VCO divisor//***************************************************************************// Simulation parameters//***************************************************************************parameter SIMULATION            = "FALSE",// Should be TRUE during design simulations and// FALSE during implementations//***************************************************************************// IODELAY and PHY related parameters//***************************************************************************parameter TCQ                   = 100,parameter DRAM_TYPE             = "DDR3",//***************************************************************************// System clock frequency parameters//***************************************************************************parameter nCK_PER_CLK           = 4,// # of memory CKs per fabric CLK//***************************************************************************// Debug parameters//***************************************************************************parameter DEBUG_PORT            = "OFF",// # = "ON" Enable debug signals/controls.//   = "OFF" Disable debug signals/controls.parameter RST_ACT_LOW           = 1// =1 for active low reset,// =0 for active high.)(// Inoutsinout [31:0]                         ddr3_dq,inout [3:0]                        ddr3_dqs_n,inout [3:0]                        ddr3_dqs_p,// Outputsoutput [14:0]                       ddr3_addr,output [2:0]                      ddr3_ba,output                                       ddr3_ras_n,output                                       ddr3_cas_n,output                                       ddr3_we_n,output                                       ddr3_reset_n,output [0:0]                        ddr3_ck_p,output [0:0]                        ddr3_ck_n,output [0:0]                       ddr3_cke,output [0:0]           ddr3_cs_n,output [3:0]                        ddr3_dm,output [0:0]                       ddr3_odt,// Inputs// Single-ended system clockinput                                        sys_clk_i,output                                       tg_compare_error,output                                       init_calib_complete,// System reset - Default polarity of sys_rst pin is Active Low.// System reset polarity will change based on the option // selected in GUI.input                                        sys_rst);function integer clogb2 (input integer size);beginsize = size - 1;for (clogb2=1; size>1; clogb2=clogb2+1)size = size >> 1;endendfunction // clogb2function integer STR_TO_INT;input [7:0] in;beginif(in == "8")STR_TO_INT = 8;else if(in == "4")STR_TO_INT = 4;elseSTR_TO_INT = 0;endendfunctionlocalparam DATA_WIDTH            = 32;localparam RANK_WIDTH = clogb2(RANKS);localparam PAYLOAD_WIDTH         = (ECC_TEST == "OFF") ? DATA_WIDTH : DQ_WIDTH;localparam BURST_LENGTH          = STR_TO_INT(BURST_MODE);localparam APP_DATA_WIDTH        = 2 * nCK_PER_CLK * PAYLOAD_WIDTH;localparam APP_MASK_WIDTH        = APP_DATA_WIDTH / 8;//***************************************************************************// Traffic Gen related parameters (derived)//***************************************************************************localparam  TG_ADDR_WIDTH = ((CS_WIDTH == 1) ? 0 : RANK_WIDTH)+ BANK_WIDTH + ROW_WIDTH + COL_WIDTH;localparam MASK_SIZE             = DATA_WIDTH/8;// Wire declarationswire [(2*nCK_PER_CLK)-1:0]              app_ecc_multiple_err;wire [(2*nCK_PER_CLK)-1:0]              app_ecc_single_err;wire [ADDR_WIDTH-1:0]                 app_addr;wire [2:0]                            app_cmd;wire                                  app_en;wire                                  app_rdy;wire [APP_DATA_WIDTH-1:0]             app_rd_data;wire                                  app_rd_data_end;wire                                  app_rd_data_valid;wire [APP_DATA_WIDTH-1:0]             app_wdf_data;wire                                  app_wdf_end;wire [APP_MASK_WIDTH-1:0]             app_wdf_mask;wire                                  app_wdf_rdy;wire                                  app_sr_active;wire                                  app_ref_ack;wire                                  app_zq_ack;wire                                  app_wdf_wren;wire [(64+(2*APP_DATA_WIDTH))-1:0]      error_status;wire [(PAYLOAD_WIDTH/8)-1:0] cumlative_dq_lane_error;wire                                  mem_pattern_init_done;wire [47:0]                           tg_wr_data_counts;wire [47:0]                           tg_rd_data_counts;wire                                  modify_enable_sel;wire [2:0]                            data_mode_manual_sel;wire [2:0]                            addr_mode_manual_sel;wire [APP_DATA_WIDTH-1:0]             cmp_data;reg [63:0]                            cmp_data_r;wire                                  cmp_data_valid;reg                                   cmp_data_valid_r;wire                                  cmp_error;wire [(PAYLOAD_WIDTH/8)-1:0]            dq_error_bytelane_cmp;wire                                  clk;wire                                  rst;wire                                  dbg_sel_pi_incdec;wire                                  dbg_pi_f_inc;wire                                  dbg_pi_f_dec;wire                                  dbg_sel_po_incdec;wire                                  dbg_po_f_inc;wire                                  dbg_po_f_stg23_sel;wire                                  dbg_po_f_dec;wire                                  vio_modify_enable;wire [3:0]                            vio_data_mode_value;wire                                  vio_pause_traffic;wire [2:0]                            vio_addr_mode_value;wire [3:0]                            vio_instr_mode_value;wire [1:0]                            vio_bl_mode_value;wire [9:0]                            vio_fixed_bl_value;wire [2:0]                            vio_fixed_instr_value;wire                                  vio_data_mask_gen;wire                                  vio_tg_rst;wire                                  vio_dbg_sel_pi_incdec;wire                                  vio_dbg_pi_f_inc;wire                                  vio_dbg_pi_f_dec;wire                                  vio_dbg_sel_po_incdec;wire                                  vio_dbg_po_f_inc;wire                                  vio_dbg_po_f_stg23_sel;wire                                  vio_dbg_po_f_dec;wire [11:0]                           device_temp;`ifdef SKIP_CALIB// skip calibration wireswire                          calib_tap_req;reg                           calib_tap_load;reg [6:0]                     calib_tap_addr;reg [7:0]                     calib_tap_val;reg                           calib_tap_load_done;`endif//***************************************************************************ddr3_top  ddr3_top_inst(//clock.               sys_clk_i       (sys_clk_i),//200M//reset.               sys_rst         (sys_rst),// Inouts.                ddr3_dq         (ddr3_dq),.                ddr3_dqs_n      (ddr3_dqs_n),.                ddr3_dqs_p      (ddr3_dqs_p),// Outputs.                ddr3_addr       (ddr3_addr),.                ddr3_ba         (ddr3_ba),.                ddr3_ras_n      (ddr3_ras_n),.                ddr3_cas_n      (ddr3_cas_n),.                ddr3_we_n       (ddr3_we_n),.                ddr3_reset_n    (ddr3_reset_n),.                ddr3_ck_p       (ddr3_ck_p),.                ddr3_ck_n       (ddr3_ck_n),.                ddr3_cke        (ddr3_cke),.                ddr3_cs_n       (ddr3_cs_n),   .                ddr3_dm         (ddr3_dm),.                ddr3_odt        (ddr3_odt));endmodule

example_top文件例化ddr3_top顶层后,sim目录如下图所示,可以看到ddr3_top和mig控制器都例化进去了

点击run simulation运行ddr3仿真

仿真界面如下图所示

选择clk_ref_i的下面所有文件

右击选择Delete删除

删除后,如下图所示

在仿真目录找到我们的顶层文件,右击选择Add to Wave Window,加入到仿真界面

加入顶层后,仿真界面如下图所示

点击复位图标将仿真数据都清零

点击复位后,仿真界面如下图所示

点击Run图标开始进行仿真

仿真进行中,初始化时间有点长,继续等待

可以看到,仿真运行到107us后init_calib_complete信号拉高,说明ddr3初始化成功,同时也说明ddr3仿真环境搭建成功

大家可以对比一下在vivado中和modelsim中仿真速度,很明显modelsim中要快很多,那是因为vivado中是直径对mig控制器进行仿真,而modelsim中有点类似对ddr3的仿真模型进行仿真,所以modelsim中仿真较快,而且vivado仿真环境是占用内存的,所以不能仿真太长时间,modelsim中这些方面比vivado要好很多。

vivado中ddr3仿真平台搭建目前已经完成,下一步就是进行一个突发长度的读写。

如若转载,请注明出处

这篇关于AX7A200教程(2): DDR3仿真平台搭建(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/366474

相关文章

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Linux卸载自带jdk并安装新jdk版本的图文教程

《Linux卸载自带jdk并安装新jdk版本的图文教程》在Linux系统中,有时需要卸载预装的OpenJDK并安装特定版本的JDK,例如JDK1.8,所以本文给大家详细介绍了Linux卸载自带jdk并... 目录Ⅰ、卸载自带jdkⅡ、安装新版jdkⅠ、卸载自带jdk1、输入命令查看旧jdkrpm -qa

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

MySQL Workbench 安装教程(保姆级)

《MySQLWorkbench安装教程(保姆级)》MySQLWorkbench是一款强大的数据库设计和管理工具,本文主要介绍了MySQLWorkbench安装教程,文中通过图文介绍的非常详细,对大... 目录前言:详细步骤:一、检查安装的数据库版本二、在官网下载对应的mysql Workbench版本,要是

通过Docker Compose部署MySQL的详细教程

《通过DockerCompose部署MySQL的详细教程》DockerCompose作为Docker官方的容器编排工具,为MySQL数据库部署带来了显著优势,下面小编就来为大家详细介绍一... 目录一、docker Compose 部署 mysql 的优势二、环境准备与基础配置2.1 项目目录结构2.2 基

Linux安装MySQL的教程

《Linux安装MySQL的教程》:本文主要介绍Linux安装MySQL的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux安装mysql1.Mysql官网2.我的存放路径3.解压mysql文件到当前目录4.重命名一下5.创建mysql用户组和用户并修