飞浆EasyDL半自动标注语义分割及数据导出

2023-11-07 19:40

本文主要是介绍飞浆EasyDL半自动标注语义分割及数据导出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写这一篇帖子实在是机缘巧合。导师让我手动标注一些图片,4000多张我寻思着我好歹也是学人工智能的,咋还能干这么不智能的事呢。然后就在CSDN上苦苦寻找了很多半自动标注的方法,说实话,都打不尽如人意,这里面我自己的原因占很大一部分,因为我小白也没用过label-me之类的。找了5,6个项目都不行,后来在一篇帖子深度学习图像-半自动和自动标注工具_u010451780的专栏-CSDN博客_半自动标注工具里面看到了百度开发的飞浆EASYDL平台,非常方便实用,但是前期因为没有开发数据导出功能,所以逼得我不得不自学爬虫,大家可以看看我的博客记录,里面全是我学爬虫的记录。但是今天群里说已经开发了数据导出功能,所以寻思着写一下我使用EASYDL的记录。

主页:EasyDL-零门槛AI开发平台

我使用的是图像分割,点击操作平台-图像分割

里面已经有一个我创建好的数据集

点击可查看数据集 

以下我将重新展示全流程,点击创建数据集

 然后可以点击导入,这里建议将我们的图像数据打包上传,否则单张上传一次只能100张。上传后的压缩包会自动解压。

然后点击右侧的在线标注,选择我们刚刚创建的数据集和版本:工具栏从上到下分别是矩形框,魔术笔,多边形框,圆形框,直线,刷子,橡皮擦,放大,所辖,删除。这里说一下魔术笔,当你左键点击图像,算法会自动根据点击点像素值帮你选则相似区域。如果识别区域超过了我们标注区域,可以在超出部分右键,算法会自动算出误识别区域。

我喜欢用多边形框 

大概处理10张左右的图片就可以开始智能标注了哦,相当方便,这里只针对一个标签的,标签多了的也不好说。点击右侧的智能标注,创建智能标注任务:

具体的步骤如下图所示,大概是4轮筛选难例,难例需要手工标注一下。

等待期间我们还可以查看标注进度 

这里直接跳过了四轮难例确认,直接到所有标注完成的状态,回到数据总览 

这里是百度新开发的easydata服务平台,点击立即前往。 

可以看出这里可以将数据导出了

这里的导出的时候需要你创建你的BUCKET,好像是拿来收费的,但是真心不贵,我4000张图片导出用了2分钱。根据流量计算你的收费。 

最后开始导出就可以获得下载地址,创建的新的页面,将下载链接复制进去就可以获得我们已经做好语义分割的图像了

 

本文章结束! 

 

 

 

 

 

 

 

 

 

 

这篇关于飞浆EasyDL半自动标注语义分割及数据导出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/365862

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者