克鲁斯卡尔算法

2023-11-07 19:28
文章标签 算法 卡尔 克鲁斯

本文主要是介绍克鲁斯卡尔算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

连通图中寻找最小生成树的常用算法有 2 种,分别是普里姆算法和克鲁斯卡尔算法。本节,我们将带您详细了解克鲁斯卡尔算法。

和普里姆算法类似,克鲁斯卡尔算法的实现过程也采用了贪心的策略:对于具有 n 个顶点的图,将图中的所有路径(边)按照权值大小进行升序排序,从权值最小的路径开始挑选,只要此路径不会和已选择的其它路径构成环路,就选定其作为最小生成树的一部分,直至选够 n-1 条路径。 

对于具有 n 个顶点的图,选择 n-1 条路径就可以将所有顶点连接起来。在此基础上,保证所选的每条路径的权值都最小,就可以找到一棵最小生成树。

 以图 1 所示的连通图为例,克鲁斯卡尔算法寻找最小生成树的过程为:
1) 将所有路径(边)按照权值大小进行升序排序:

2) 从最小的路径开始,只要该路径不会和其它已选路径产生环路,就选择它作为组成最小生成树的一部分。显然 (B,D) 符合要求,选择它组成最小生成树:

3) (D,T) 不会和已选路径 (B,D) 构成环路,可以组成最小生成树:

 4) (A,C) 不会和 (B,D)、(D,T) 构成环路,可以组成最小生成树:

5) (C,D) 不会和 (A,C)、(B,D)、(D,T) 构成环路,可以组成最小生成树:

 6) (C,B) 会和已选路径 (C,D)、(B,D) 构成环路(如图 6 所示),因此不会被选择:

7) (B,T) 会和已选路径 (B,D)、(D,T) 构成环路,也不被选择;

8) (A,B) 会和已选路径 (A,C)、(C,D)、(D,B) 构成环路,也不被选择;

9) (S,A) 不会和已选路径 (A,C)、(C,D)、(D,B)、(D,T) 构成环路,可以组成最小生成树:

 

克鲁斯卡尔算法的具体实现

克鲁斯卡尔算法的实现,难点在于如何判断所选路径是否会造成环路,这里给您介绍一种简单的解决方案:初始状态下,为图中的每个顶点配备一个互不相同的标记值,算法执行过程中,如果新路径两个顶点的标记值不同,则不会构成环路,该路径被选择的同时,要将两个顶点的标记改为和其它已选路径中的顶点标记相同;反之,如果该路径两个顶点的标记值相同,则会构成环路。

举个例子,图 5 中,已选路径为 (A,C)、(B,D)、(C,D)、(D,T),此时顶点 A、C、B、D、T 的标记值相同,顶点 S 的标记值和它们不同。图 6 中,判定 (B,C) 路径是否可以组成最小生成树时,由于顶点 B 和 C 的标记值相同,因此该路径会和其它已选路径构成环路(如图 6 所示),不能组成最小生成树。

如下为实现克鲁斯卡尔算法的 C 语言程序:

#include <stdio.h>
#include <stdlib.h>
#define N 9   // 图中边的数量
#define P 6   // 图中顶点的数量
//构建表示边的结构体
struct edge {//一条边有 2 个顶点int initial;int end;//边的权值int weight;
};
//qsort排序函数中使用,使edges结构体中的边按照权值大小升序排序
int cmp(const void *a, const void*b) {return  ((struct edge*)a)->weight - ((struct edge*)b)->weight;
}
//克鲁斯卡尔算法寻找最小生成树,edges 存储用户输入的图的各个边,minTree 用于记录组成最小生成树的各个边
void kruskal_MinTree(struct edge edges[], struct edge minTree[]) {int i,initial, end;//每个顶点配置一个标记值int assists[P];int num = 0;//初始状态下,每个顶点的标记都不相同for (i = 0; i < P; i++) {assists[i] = i;}//根据权值,对所有边进行升序排序qsort(edges, N, sizeof(edges[0]), cmp);//遍历所有的边for (int i = 0; i < N; i++) {//找到当前边的两个顶点在 assists 数组中的位置下标initial = edges[i].initial - 1;end = edges[i].end - 1;//如果顶点位置存在且顶点的标记不同,说明不在一个集合中,不会产生回路if (assists[initial] != assists[end]) {//记录该边,作为最小生成树的组成部分minTree[num] = edges[i];//计数+1num++;int elem = assists[end];//将新加入生成树的顶点标记全部改为一样的for (int k = 0; k < P; k++) {if (assists[k] == elem) {assists[k] = assists[initial];}}//如果选择的边的数量和顶点数相差1,证明最小生成树已经形成,退出循环if (num == P - 1) {break;}}}
}
void display(struct edge minTree[]) {int cost = 0;printf("最小生成树为:\n");for (int i = 0; i < P - 1; i++) {printf("%d-%d  权值:%d\n", minTree[i].initial, minTree[i].end, minTree[i].weight);cost += minTree[i].weight;}printf("总权值为:%d", cost);
}
int main() {int i;struct edge edges[N], minTree[P - 1];for (i = 0; i < N; i++) {scanf("%d %d %d", &edges[i].initial, &edges[i].end, &edges[i].weight);}kruskal_MinTree(edges,minTree);display(minTree);return 0;
}

这篇关于克鲁斯卡尔算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/365773

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

最大公因数:欧几里得算法

简述         求两个数字 m和n 的最大公因数,假设r是m%n的余数,只要n不等于0,就一直执行 m=n,n=r 举例 以18和12为例 m n r18 % 12 = 612 % 6 = 06 0所以最大公因数为:6 代码实现 #include<iostream>using namespace std;/