克鲁斯卡尔算法

2023-11-07 19:28
文章标签 算法 卡尔 克鲁斯

本文主要是介绍克鲁斯卡尔算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

连通图中寻找最小生成树的常用算法有 2 种,分别是普里姆算法和克鲁斯卡尔算法。本节,我们将带您详细了解克鲁斯卡尔算法。

和普里姆算法类似,克鲁斯卡尔算法的实现过程也采用了贪心的策略:对于具有 n 个顶点的图,将图中的所有路径(边)按照权值大小进行升序排序,从权值最小的路径开始挑选,只要此路径不会和已选择的其它路径构成环路,就选定其作为最小生成树的一部分,直至选够 n-1 条路径。 

对于具有 n 个顶点的图,选择 n-1 条路径就可以将所有顶点连接起来。在此基础上,保证所选的每条路径的权值都最小,就可以找到一棵最小生成树。

 以图 1 所示的连通图为例,克鲁斯卡尔算法寻找最小生成树的过程为:
1) 将所有路径(边)按照权值大小进行升序排序:

2) 从最小的路径开始,只要该路径不会和其它已选路径产生环路,就选择它作为组成最小生成树的一部分。显然 (B,D) 符合要求,选择它组成最小生成树:

3) (D,T) 不会和已选路径 (B,D) 构成环路,可以组成最小生成树:

 4) (A,C) 不会和 (B,D)、(D,T) 构成环路,可以组成最小生成树:

5) (C,D) 不会和 (A,C)、(B,D)、(D,T) 构成环路,可以组成最小生成树:

 6) (C,B) 会和已选路径 (C,D)、(B,D) 构成环路(如图 6 所示),因此不会被选择:

7) (B,T) 会和已选路径 (B,D)、(D,T) 构成环路,也不被选择;

8) (A,B) 会和已选路径 (A,C)、(C,D)、(D,B) 构成环路,也不被选择;

9) (S,A) 不会和已选路径 (A,C)、(C,D)、(D,B)、(D,T) 构成环路,可以组成最小生成树:

 

克鲁斯卡尔算法的具体实现

克鲁斯卡尔算法的实现,难点在于如何判断所选路径是否会造成环路,这里给您介绍一种简单的解决方案:初始状态下,为图中的每个顶点配备一个互不相同的标记值,算法执行过程中,如果新路径两个顶点的标记值不同,则不会构成环路,该路径被选择的同时,要将两个顶点的标记改为和其它已选路径中的顶点标记相同;反之,如果该路径两个顶点的标记值相同,则会构成环路。

举个例子,图 5 中,已选路径为 (A,C)、(B,D)、(C,D)、(D,T),此时顶点 A、C、B、D、T 的标记值相同,顶点 S 的标记值和它们不同。图 6 中,判定 (B,C) 路径是否可以组成最小生成树时,由于顶点 B 和 C 的标记值相同,因此该路径会和其它已选路径构成环路(如图 6 所示),不能组成最小生成树。

如下为实现克鲁斯卡尔算法的 C 语言程序:

#include <stdio.h>
#include <stdlib.h>
#define N 9   // 图中边的数量
#define P 6   // 图中顶点的数量
//构建表示边的结构体
struct edge {//一条边有 2 个顶点int initial;int end;//边的权值int weight;
};
//qsort排序函数中使用,使edges结构体中的边按照权值大小升序排序
int cmp(const void *a, const void*b) {return  ((struct edge*)a)->weight - ((struct edge*)b)->weight;
}
//克鲁斯卡尔算法寻找最小生成树,edges 存储用户输入的图的各个边,minTree 用于记录组成最小生成树的各个边
void kruskal_MinTree(struct edge edges[], struct edge minTree[]) {int i,initial, end;//每个顶点配置一个标记值int assists[P];int num = 0;//初始状态下,每个顶点的标记都不相同for (i = 0; i < P; i++) {assists[i] = i;}//根据权值,对所有边进行升序排序qsort(edges, N, sizeof(edges[0]), cmp);//遍历所有的边for (int i = 0; i < N; i++) {//找到当前边的两个顶点在 assists 数组中的位置下标initial = edges[i].initial - 1;end = edges[i].end - 1;//如果顶点位置存在且顶点的标记不同,说明不在一个集合中,不会产生回路if (assists[initial] != assists[end]) {//记录该边,作为最小生成树的组成部分minTree[num] = edges[i];//计数+1num++;int elem = assists[end];//将新加入生成树的顶点标记全部改为一样的for (int k = 0; k < P; k++) {if (assists[k] == elem) {assists[k] = assists[initial];}}//如果选择的边的数量和顶点数相差1,证明最小生成树已经形成,退出循环if (num == P - 1) {break;}}}
}
void display(struct edge minTree[]) {int cost = 0;printf("最小生成树为:\n");for (int i = 0; i < P - 1; i++) {printf("%d-%d  权值:%d\n", minTree[i].initial, minTree[i].end, minTree[i].weight);cost += minTree[i].weight;}printf("总权值为:%d", cost);
}
int main() {int i;struct edge edges[N], minTree[P - 1];for (i = 0; i < N; i++) {scanf("%d %d %d", &edges[i].initial, &edges[i].end, &edges[i].weight);}kruskal_MinTree(edges,minTree);display(minTree);return 0;
}

这篇关于克鲁斯卡尔算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/365773

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖