SparkContext 源码分析

2023-11-07 19:20
文章标签 分析 源码 sparkcontext

本文主要是介绍SparkContext 源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SparkContext 源码分析

更多资源

  • github: https://github.com/opensourceteams/spark-scala-maven
  • csdn(汇总视频在线看): https://blog.csdn.net/thinktothings/article/details/84726769

Youtub 视频分享

  • Youtub视频(Spark原理分析图解): https://youtu.be/euIuutjAB4I
  • Youtub视频(Spark源码分析详解): https://youtu.be/tUH7QnCcwgg

bilibili 视频分享

  • bilibili视频(Spark原理分析图解): https://youtu.be/euIuutjAB4I
  • bilibili视频(Spark源码分析详解): https://www.bilibili.com/video/av37442161/
src="//player.bilibili.com/player.html?aid=37442161&page=1" scrolling="no" border="0" allowfullscreen="true">

文档说明

Main entry point for Spark functionality.A SparkContext represents the connection to a Spark cluster, and can be used to create RDDs, accumulators and broadcast variables on that cluster.Only one SparkContext may be active per JVM. You must stop() the active SparkContext before creating a new one. This limitation may eventually be removed; see SPARK-2243 for more details.

翻译

).Spark功能主要入口点
).一个SparkContext表示与一个Spark集群的连接
).在Spark集群上,能创建RDDs,累加器,广播变量
).每个JVM仅仅只有一个SparkContext可能是活动的
).在创建一个新的SparkContext之前,你必须停掉活动的SparkContext,这个限制最终可能被 移除,看SPARK-2243 更多详情

SparkContext原理图

SparkContext原理图

xmind文件下载

https://github.com/opensourceteams/spark-scala-maven/blob/master/md/images/spark/SparkContext.xmind

配置信息

可配置信息

  • spark.jars = jar文件路径(可迭代的)
  • spark.files = 文件路径
  • spark.eventLog.dir=/tmp/spark-events // 事件日志目录
  • spark.eventLog.compress=false //事件日志是否压缩
  • spark.shuffle.manager=sort //指定shuffler manager
// Let the user specify short names for shuffle managersval shortShuffleMgrNames = Map("hash" -> "org.apache.spark.shuffle.hash.HashShuffleManager","sort" -> "org.apache.spark.shuffle.sort.SortShuffleManager","tungsten-sort" -> "org.apache.spark.shuffle.sort.SortShuffleManager")val shuffleMgrName = conf.get("spark.shuffle.manager", "sort")val shuffleMgrClass = shortShuffleMgrNames.getOrElse(shuffleMgrName.toLowerCase, shuffleMgrName)val shuffleManager = instantiateClass[ShuffleManager](shuffleMgrClass)
  • spark.memory.useLegacyMode=true //指定内存管理器
      val useLegacyMemoryManager = conf.getBoolean("spark.memory.useLegacyMode", true)val memoryManager: MemoryManager =if (useLegacyMemoryManager) {new StaticMemoryManager(conf, numUsableCores)} else {UnifiedMemoryManager(conf, numUsableCores)}
    
- spark.ui.showConsoleProgress=true      //展示控制台的进度信息
- spark.ui.enabled=true      //是否开启SparkUI
- spark.executor.memory=      //spark executor 的内存
- SPARK_EXECUTOR_MEMORY=  //spark executor 的内存
- SPARK_MEM=  //spark executor 的内存```scala/***查找顺序,找到前面的就不找后面的了(配置文件中设置值单位为 byte),默认值为1024MBspark.executor.memory  >  SPARK_EXECUTOR_MEMORY >  SPARK_MEM*/_executorMemory = _conf.getOption("spark.executor.memory").orElse(Option(System.getenv("SPARK_EXECUTOR_MEMORY"))).orElse(Option(System.getenv("SPARK_MEM")).map(warnSparkMem)).map(Utils.memoryStringToMb).getOrElse(1024)
  • spark.scheduler.mode=FIFO //TaskSchedulerImpl 调度模式,可选(FIFO,FAIR,NONE)
/**
*  "FAIR" and "FIFO" determines which policy is used
*    to order tasks amongst a Schedulable's sub-queues
*  "NONE" is used when the a Schedulable has no sub-queues.
*/
object SchedulingMode extends Enumeration {type SchedulingMode = Valueval FAIR, FIFO, NONE = Value
}
  • spark.cores.max=2 设置executor占用cpu内核个数

  • spark.executor.extraJavaOptions= //设置executor启动执行的java参数

  • spark.executor.extraClassPath= //设置 executor 执行的classpath

  • spark.executor.extraLibraryPath= //设置 executor LibraryPath

  • spark.executor.cores= //executor core 个数分配

  • spark.rpc.lookupTimeout=“120s” //设置 RPCTimeout超时时间

  • spark.network.timeout=“120s” //设置 RPCTimeout超时时间

 /** Returns the default Spark timeout to use for RPC remote endpoint lookup. */private[spark] def lookupRpcTimeout(conf: SparkConf): RpcTimeout = {RpcTimeout(conf, Seq("spark.rpc.lookupTimeout", "spark.network.timeout"), "120s")}

Spark系统设置配置信息

  • spark.driver.host = Utils.localHostName()
  • spark.driver.port = 0
  • spark.executor.id = driver

主要内容

创建作业进度监听器

 _jobProgressListener = new JobProgressListener(_conf)listenerBus.addListener(jobProgressListener)

创建SparkEnv

_env = createSparkEnv(_conf, isLocal, listenerBus)
SparkEnv.set(_env)
  • 创建DriverEnv
 SparkEnv.createDriverEnv(conf, isLocal, listenerBus, SparkContext.numDriverCores(master))
  • 指定默认的 spark.rpc = org.apache.spark.rpc.netty.NettyRpcEnvFactory
  private def getRpcEnvFactory(conf: SparkConf): RpcEnvFactory = {val rpcEnvNames = Map("akka" -> "org.apache.spark.rpc.akka.AkkaRpcEnvFactory","netty" -> "org.apache.spark.rpc.netty.NettyRpcEnvFactory")val rpcEnvName = conf.get("spark.rpc", "netty")val rpcEnvFactoryClassName = rpcEnvNames.getOrElse(rpcEnvName.toLowerCase, rpcEnvName)Utils.classForName(rpcEnvFactoryClassName).newInstance().asInstanceOf[RpcEnvFactory]}
  • 创建NettyRpcEnv并启动,此时启动 ‘sparkDriver’
def create(config: RpcEnvConfig): RpcEnv = {val sparkConf = config.conf// Use JavaSerializerInstance in multiple threads is safe. However, if we plan to support// KryoSerializer in future, we have to use ThreadLocal to store SerializerInstanceval javaSerializerInstance =new JavaSerializer(sparkConf).newInstance().asInstanceOf[JavaSerializerInstance]val nettyEnv =new NettyRpcEnv(sparkConf, javaSerializerInstance, config.host, config.securityManager)if (!config.clientMode) {val startNettyRpcEnv: Int => (NettyRpcEnv, Int) = { actualPort =>nettyEnv.startServer(actualPort)(nettyEnv, nettyEnv.address.port)}try {Utils.startServiceOnPort(config.port, startNettyRpcEnv, sparkConf, config.name)._1} catch {case NonFatal(e) =>nettyEnv.shutdown()throw e}}nettyEnv}
  • 创建ActorSystem并启动,此时启动 ‘sparkDriverActorSystem’
 /*** Creates an ActorSystem ready for remoting, with various Spark features. Returns both the* ActorSystem itself and its port (which is hard to get from Akka).** Note: the `name` parameter is important, as even if a client sends a message to right* host + port, if the system name is incorrect, Akka will drop the message.** If indestructible is set to true, the Actor System will continue running in the event* of a fatal exception. This is used by [[org.apache.spark.executor.Executor]].*/def createActorSystem(name: String,host: String,port: Int,conf: SparkConf,securityManager: SecurityManager): (ActorSystem, Int) = {val startService: Int => (ActorSystem, Int) = { actualPort =>doCreateActorSystem(name, host, actualPort, conf, securityManager)}Utils.startServiceOnPort(port, startService, conf, name)}
  • 指定spark序列化器: org.apache.spark.serializer.JavaSerializer

val serializer = instantiateClassFromConfSerializer
logDebug(s"Using serializer: ${serializer.getClass}")

val closureSerializer = instantiateClassFromConf[Serializer]("spark.closure.serializer", "org.apache.spark.serializer.JavaSerializer")

- 实例化 MapOutputTrackerMaster ```scalaval broadcastManager = new BroadcastManager(isDriver, conf, securityManager)val mapOutputTracker = if (isDriver) {new MapOutputTrackerMaster(conf, broadcastManager, isLocal)} else {new MapOutputTrackerWorker(conf)}
  • 注册 MapOutputTracker 到 NettyRpcEndpointRef(通信用 和map输出信息的追踪)
def registerRpcEndpoint(name: String, endpoint: RpcEndpoint): NettyRpcEndpointRef = {val addr = RpcEndpointAddress(nettyEnv.address, name)val endpointRef = new NettyRpcEndpointRef(nettyEnv.conf, addr, nettyEnv)synchronized {if (stopped) {throw new IllegalStateException("RpcEnv has been stopped")}if (endpoints.putIfAbsent(name, new EndpointData(name, endpoint, endpointRef)) != null) {throw new IllegalArgumentException(s"There is already an RpcEndpoint called $name")}val data = endpoints.get(name)endpointRefs.put(data.endpoint, data.ref)receivers.offer(data)  // for the OnStart message}endpointRef}
  • 实例化ShuflleManager
// Let the user specify short names for shuffle managersval shortShuffleMgrNames = Map("hash" -> "org.apache.spark.shuffle.hash.HashShuffleManager","sort" -> "org.apache.spark.shuffle.sort.SortShuffleManager","tungsten-sort" -> "org.apache.spark.shuffle.sort.SortShuffleManager")val shuffleMgrName = conf.get("spark.shuffle.manager", "sort")val shuffleMgrClass = shortShuffleMgrNames.getOrElse(shuffleMgrName.toLowerCase, shuffleMgrName)val shuffleManager = instantiateClass[ShuffleManager](shuffleMgrClass)
  • 实例化内存管理器

val useLegacyMemoryManager = conf.getBoolean(“spark.memory.useLegacyMode”, true)
val memoryManager: MemoryManager =
if (useLegacyMemoryManager) {
new StaticMemoryManager(conf, numUsableCores)
} else {
UnifiedMemoryManager(conf, numUsableCores)
}

- 注册 BlockManagerMaster  到 NettyRpcEndpointRef(通信用)```scalaval blockManagerMaster = new BlockManagerMaster(registerOrLookupEndpoint(BlockManagerMaster.DRIVER_ENDPOINT_NAME,new BlockManagerMasterEndpoint(rpcEnv, isLocal, conf, listenerBus)),conf, isDriver)
  • 缓存管理器 实例化BlockManager
   // NB: blockManager is not valid until initialize() is called later.val blockManager = new BlockManager(executorId, rpcEnv, blockManagerMaster,serializer, conf, memoryManager, mapOutputTracker, shuffleManager,blockTransferService, securityManager, numUsableCores)val cacheManager = new CacheManager(blockManager)
  • 创建测量系统
val metricsSystem = if (isDriver) {// Don't start metrics system right now for Driver.// We need to wait for the task scheduler to give us an app ID.// Then we can start the metrics system.MetricsSystem.createMetricsSystem("driver", conf, securityManager)} else {// We need to set the executor ID before the MetricsSystem is created because sources and// sinks specified in the metrics configuration file will want to incorporate this executor's// ID into the metrics they report.conf.set("spark.executor.id", executorId)val ms = MetricsSystem.createMetricsSystem("executor", conf, securityManager)ms.start()ms}
  • 创建临时目录,如果是分布式模式,这是一个executor的当前工作目录
 // Set the sparkFiles directory, used when downloading dependencies.  In local mode,// this is a temporary directory; in distributed mode, this is the executor's current working// directory.val sparkFilesDir: String = if (isDriver) {Utils.createTempDir(Utils.getLocalDir(conf), "userFiles").getAbsolutePath} else {"."}
  • 注册 OutputCommitCoordinator 到 NettyRpcEndpointRef(通信用)
val outputCommitCoordinator = mockOutputCommitCoordinator.getOrElse {new OutputCommitCoordinator(conf, isDriver)}val outputCommitCoordinatorRef = registerOrLookupEndpoint("OutputCommitCoordinator",new OutputCommitCoordinatorEndpoint(rpcEnv, outputCommitCoordinator))outputCommitCoordinator.coordinatorRef = Some(outputCommitCoordinatorRef)
  • new SparkEnv 并返回
 val envInstance = new SparkEnv(executorId,rpcEnv,actorSystem,serializer,closureSerializer,cacheManager,mapOutputTracker,shuffleManager,broadcastManager,blockTransferService,blockManager,securityManager,sparkFilesDir,metricsSystem,memoryManager,outputCommitCoordinator,conf)// Add a reference to tmp dir created by driver, we will delete this tmp dir when stop() is// called, and we only need to do it for driver. Because driver may run as a service, and if we// don't delete this tmp dir when sc is stopped, then will create too many tmp dirs.if (isDriver) {envInstance.driverTmpDirToDelete = Some(sparkFilesDir)}envInstance

创建SparkUI

   _ui =if (conf.getBoolean("spark.ui.enabled", true)) {Some(SparkUI.createLiveUI(this, _conf, listenerBus, _jobProgressListener,_env.securityManager, appName, startTime = startTime))} else {// For tests, do not enable the UINone}// Bind the UI before starting the task scheduler to communicate// the bound port to the cluster manager properly_ui.foreach(_.bind())

注册心跳接收器

   // We need to register "HeartbeatReceiver" before "createTaskScheduler" because Executor will// retrieve "HeartbeatReceiver" in the constructor. (SPARK-6640)_heartbeatReceiver = env.rpcEnv.setupEndpoint(HeartbeatReceiver.ENDPOINT_NAME, new HeartbeatReceiver(this))

创建和启动调度器(TaskScheduler,DAGScheduler)

   // Create and start the schedulerval (sched, ts) = SparkContext.createTaskScheduler(this, master)_schedulerBackend = sched_taskScheduler = ts_dagScheduler = new DAGScheduler(this)_heartbeatReceiver.ask[Boolean](TaskSchedulerIsSet)// start TaskScheduler after taskScheduler sets DAGScheduler reference in DAGScheduler's// constructor_taskScheduler.start()
  • org.apache.spark.scheduler.TaskSchedulerImpl 文档说明
/**
).SchedulerBackend 对多种类型的集群调度任务
).LocalBackend 设置  isLocal为true, 也能调度本地任务
).SchedulerBackend.处理常用逻辑,决定跨作业的调度顺序,唤醒和启动推测的任务
).客户端应该先调用  initialize() 和  start(),然后通过 runTasks方法提交任务集* Schedules tasks for multiple types of clusters by acting through a SchedulerBackend.* It can also work with a local setup by using a LocalBackend and setting isLocal to true.* It handles common logic, like determining a scheduling order across jobs, waking up to launch* speculative tasks, etc.** Clients should first call initialize() and start(), then submit task sets through the* runTasks method.** THREADING: SchedulerBackends and task-submitting clients can call this class from multiple* threads, so it needs locks in public API methods to maintain its state. In addition, some* SchedulerBackends synchronize on themselves when they want to send events here, and then* acquire a lock on us, so we need to make sure that we don't try to lock the backend while* we are holding a lock on ourselves.*/
  • Standalone模式创建TaskSchedulerImpl并初使化中指定 backend为SparkDeploySchedulerBackend
     case SPARK_REGEX(sparkUrl) =>val scheduler = new TaskSchedulerImpl(sc)val masterUrls = sparkUrl.split(",").map("spark://" + _)val backend = new SparkDeploySchedulerBackend(scheduler, sc, masterUrls)scheduler.initialize(backend)(backend, scheduler)
 def initialize(backend: SchedulerBackend) {this.backend = backend// temporarily set rootPool name to emptyrootPool = new Pool("", schedulingMode, 0, 0)schedulableBuilder = {schedulingMode match {case SchedulingMode.FIFO =>new FIFOSchedulableBuilder(rootPool)case SchedulingMode.FAIR =>new FairSchedulableBuilder(rootPool, conf)}}schedulableBuilder.buildPools()}

任务调度器启动

  • 任务调度器启动_taskScheduler.start()
// start TaskScheduler after taskScheduler sets DAGScheduler reference in DAGScheduler's// constructor_taskScheduler.start()
  • 调用SparkDeploySchedulerBackend start方法
  override def start() {backend.start()if (!isLocal && conf.getBoolean("spark.speculation", false)) {logInfo("Starting speculative execution thread")speculationScheduler.scheduleAtFixedRate(new Runnable {override def run(): Unit = Utils.tryOrStopSparkContext(sc) {checkSpeculatableTasks()}}, SPECULATION_INTERVAL_MS, SPECULATION_INTERVAL_MS, TimeUnit.MILLISECONDS)}}
  • 再调用CoarseGrainedSchedulerBackend 的start方法 registerRpcEndpoint
    注册(通信用) [CoarseGrainedScheduler]
  • 实例化ApplicationDescription 包含 command (org.apache.spark.executor.CoarseGrainedExecutorBackend)
  • 启动 AppClient registerRpcEndpoint 注册(通信用)[AppClient]
override def start() {super.start()launcherBackend.connect()// The endpoint for executors to talk to usval driverUrl = rpcEnv.uriOf(SparkEnv.driverActorSystemName,RpcAddress(sc.conf.get("spark.driver.host"), sc.conf.get("spark.driver.port").toInt),CoarseGrainedSchedulerBackend.ENDPOINT_NAME)val args = Seq("--driver-url", driverUrl,"--executor-id", "{{EXECUTOR_ID}}","--hostname", "{{HOSTNAME}}","--cores", "{{CORES}}","--app-id", "{{APP_ID}}","--worker-url", "{{WORKER_URL}}")val extraJavaOpts = sc.conf.getOption("spark.executor.extraJavaOptions").map(Utils.splitCommandString).getOrElse(Seq.empty)val classPathEntries = sc.conf.getOption("spark.executor.extraClassPath").map(_.split(java.io.File.pathSeparator).toSeq).getOrElse(Nil)val libraryPathEntries = sc.conf.getOption("spark.executor.extraLibraryPath").map(_.split(java.io.File.pathSeparator).toSeq).getOrElse(Nil)// When testing, expose the parent class path to the child. This is processed by// compute-classpath.{cmd,sh} and makes all needed jars available to child processes// when the assembly is built with the "*-provided" profiles enabled.val testingClassPath =if (sys.props.contains("spark.testing")) {sys.props("java.class.path").split(java.io.File.pathSeparator).toSeq} else {Nil}// Start executors with a few necessary configs for registering with the schedulerval sparkJavaOpts = Utils.sparkJavaOpts(conf, SparkConf.isExecutorStartupConf)val javaOpts = sparkJavaOpts ++ extraJavaOptsval command = Command("org.apache.spark.executor.CoarseGrainedExecutorBackend",args, sc.executorEnvs, classPathEntries ++ testingClassPath, libraryPathEntries, javaOpts)val appUIAddress = sc.ui.map(_.appUIAddress).getOrElse("")val coresPerExecutor = conf.getOption("spark.executor.cores").map(_.toInt)val appDesc = new ApplicationDescription(sc.appName, maxCores, sc.executorMemory,command, appUIAddress, sc.eventLogDir, sc.eventLogCodec, coresPerExecutor)client = new AppClient(sc.env.rpcEnv, masters, appDesc, this, conf)client.start()launcherBackend.setState(SparkAppHandle.State.SUBMITTED)waitForRegistration()launcherBackend.setState(SparkAppHandle.State.RUNNING)}
  • CoarseGrainedSchedulerBackend 文档
/**
). 一个后端调度器 等待粗粒度 executors 通过 Akka连接他
).在Spark作业期间,这个后端调度接管着每个executor 比起交出executors给别人调度
).无论何时完成任务,都要求调度器启动一个新的executor给每个每个新的任务
).executors 可以以多种方式启动,例如 粗粒度 Mesos模式 Mesos任务
).或Spark standalone 部署模式的 standalone 处理* A scheduler backend that waits for coarse grained executors to connect to it through Akka.
* This backend holds onto each executor for the duration of the Spark job rather than relinquishing
* executors whenever a task is done and asking the scheduler to launch a new executor for
* each new task. Executors may be launched in a variety of ways, such as Mesos tasks for the
* coarse-grained Mesos mode or standalone processes for Spark's standalone deploy mode
* (spark.deploy.*).
*/
private[spark]
class CoarseGrainedSchedulerBackend(scheduler: TaskSchedulerImpl, val rpcEnv: RpcEnv)extends ExecutorAllocationClient with SchedulerBackend with Logging
{
  • 调用ClientEndpoint 的 onStart方法 异步向所有master注册,向master发送消息: RegisterApplication
override def onStart(): Unit = {try {registerWithMaster(1)} catch {case e: Exception =>logWarning("Failed to connect to master", e)markDisconnected()stop()}}
 /*** Register with all masters asynchronously. It will call `registerWithMaster` every* REGISTRATION_TIMEOUT_SECONDS seconds until exceeding REGISTRATION_RETRIES times.* Once we connect to a master successfully, all scheduling work and Futures will be cancelled.** nthRetry means this is the nth attempt to register with master.*/private def registerWithMaster(nthRetry: Int) {registerMasterFutures.set(tryRegisterAllMasters())registrationRetryTimer.set(registrationRetryThread.scheduleAtFixedRate(new Runnable {override def run(): Unit = {if (registered.get) {registerMasterFutures.get.foreach(_.cancel(true))registerMasterThreadPool.shutdownNow()} else if (nthRetry >= REGISTRATION_RETRIES) {markDead("All masters are unresponsive! Giving up.")} else {registerMasterFutures.get.foreach(_.cancel(true))registerWithMaster(nthRetry + 1)}}}, REGISTRATION_TIMEOUT_SECONDS, REGISTRATION_TIMEOUT_SECONDS, TimeUnit.SECONDS))}
   /***  Register with all masters asynchronously and returns an array `Future`s for cancellation.*/private def tryRegisterAllMasters(): Array[JFuture[_]] = {for (masterAddress <- masterRpcAddresses) yield {registerMasterThreadPool.submit(new Runnable {override def run(): Unit = try {if (registered.get) {return}logInfo("Connecting to master " + masterAddress.toSparkURL + "...")val masterRef =rpcEnv.setupEndpointRef(Master.SYSTEM_NAME, masterAddress, Master.ENDPOINT_NAME)masterRef.send(RegisterApplication(appDescription, self))} catch {case ie: InterruptedException => // Cancelledcase NonFatal(e) => logWarning(s"Failed to connect to master $masterAddress", e)}})}}

org.apache.spark.rpc.netty.Dispatcher

类文档说明
/**
一个消息分配器,负责将RPC消息路由到适当的端点
* A message dispatcher, responsible for routing RPC messages to the appropriate endpoint(s).
*/
private[netty] class Dispatcher(nettyEnv: NettyRpcEnv) extends Logging {
注册RPC端点 (关键通信及OnStart方法的调用)
/*** new EndpointData(name, endpoint, endpointRef) 的时候会进行 *  val inbox = new Inbox(ref, endpoint)的操作* Inbox 实例化时会进行如下操作,当相于首先增加OnStart消息// OnStart should be the first message to processinbox.synchronized {messages.add(OnStart)}*/
def registerRpcEndpoint(name: String, endpoint: RpcEndpoint): NettyRpcEndpointRef = {val addr = RpcEndpointAddress(nettyEnv.address, name)val endpointRef = new NettyRpcEndpointRef(nettyEnv.conf, addr, nettyEnv)synchronized {if (stopped) {throw new IllegalStateException("RpcEnv has been stopped")}if (endpoints.putIfAbsent(name, new EndpointData(name, endpoint, endpointRef)) != null) {throw new IllegalArgumentException(s"There is already an RpcEndpoint called $name")}val data = endpoints.get(name)endpointRefs.put(data.endpoint, data.ref)receivers.offer(data)  // for the OnStart message}endpointRef}
Inbox

A inbox that stores messages for an [[RpcEndpoint]] and posts messages to it thread-safely.

/**
* Inbox 实例化时会进行如下操作,当相于首先增加OnStart消息给当前的对象
(也就是每个RpcEndpoint 子类进行注册时,首先增加OnStart消息)
* OnStart消息在 process方法中会进行 endpoint实现类的onStart() 方法回调
*/// OnStart should be the first message to processinbox.synchronized {messages.add(OnStart)}
  /*** Process stored messages.*/def process(dispatcher: Dispatcher): Unit = {......
case OnStart =>endpoint.onStart()if (!endpoint.isInstanceOf[ThreadSafeRpcEndpoint]) {inbox.synchronized {if (!stopped) {enableConcurrent = true}}}

入口代码块 400行

try {_conf = config.clone()_conf.validateSettings()if (!_conf.contains("spark.master")) {throw new SparkException("A master URL must be set in your configuration")}if (!_conf.contains("spark.app.name")) {throw new SparkException("An application name must be set in your configuration")}// System property spark.yarn.app.id must be set if user code ran by AM on a YARN cluster// yarn-standalone is deprecated, but still supportedif ((master == "yarn-cluster" || master == "yarn-standalone") &&!_conf.contains("spark.yarn.app.id")) {throw new SparkException("Detected yarn-cluster mode, but isn't running on a cluster. " +"Deployment to YARN is not supported directly by SparkContext. Please use spark-submit.")}if (_conf.getBoolean("spark.logConf", false)) {logInfo("Spark configuration:\n" + _conf.toDebugString)}// Set Spark driver host and port system properties_conf.setIfMissing("spark.driver.host", Utils.localHostName())_conf.setIfMissing("spark.driver.port", "0")_conf.set("spark.executor.id", SparkContext.DRIVER_IDENTIFIER)_jars = _conf.getOption("spark.jars").map(_.split(",")).map(_.filter(_.size != 0)).toSeq.flatten_files = _conf.getOption("spark.files").map(_.split(",")).map(_.filter(_.size != 0)).toSeq.flatten_eventLogDir =if (isEventLogEnabled) {val unresolvedDir = conf.get("spark.eventLog.dir", EventLoggingListener.DEFAULT_LOG_DIR).stripSuffix("/")Some(Utils.resolveURI(unresolvedDir))} else {None}_eventLogCodec = {val compress = _conf.getBoolean("spark.eventLog.compress", false)if (compress && isEventLogEnabled) {Some(CompressionCodec.getCodecName(_conf)).map(CompressionCodec.getShortName)} else {None}}_conf.set("spark.externalBlockStore.folderName", externalBlockStoreFolderName)if (master == "yarn-client") System.setProperty("SPARK_YARN_MODE", "true")// "_jobProgressListener" should be set up before creating SparkEnv because when creating// "SparkEnv", some messages will be posted to "listenerBus" and we should not miss them._jobProgressListener = new JobProgressListener(_conf)listenerBus.addListener(jobProgressListener)// Create the Spark execution environment (cache, map output tracker, etc)_env = createSparkEnv(_conf, isLocal, listenerBus)SparkEnv.set(_env)// If running the REPL, register the repl's output dir with the file server._conf.getOption("spark.repl.class.outputDir").foreach { path =>val replUri = _env.rpcEnv.fileServer.addDirectory("/classes", new File(path))_conf.set("spark.repl.class.uri", replUri)}_metadataCleaner = new MetadataCleaner(MetadataCleanerType.SPARK_CONTEXT, this.cleanup, _conf)_statusTracker = new SparkStatusTracker(this)_progressBar =if (_conf.getBoolean("spark.ui.showConsoleProgress", true) && !log.isInfoEnabled) {Some(new ConsoleProgressBar(this))} else {None}_ui =if (conf.getBoolean("spark.ui.enabled", true)) {Some(SparkUI.createLiveUI(this, _conf, listenerBus, _jobProgressListener,_env.securityManager, appName, startTime = startTime))} else {// For tests, do not enable the UINone}// Bind the UI before starting the task scheduler to communicate// the bound port to the cluster manager properly_ui.foreach(_.bind())_hadoopConfiguration = SparkHadoopUtil.get.newConfiguration(_conf)// Add each JAR given through the constructorif (jars != null) {jars.foreach(addJar)}if (files != null) {files.foreach(addFile)}_executorMemory = _conf.getOption("spark.executor.memory").orElse(Option(System.getenv("SPARK_EXECUTOR_MEMORY"))).orElse(Option(System.getenv("SPARK_MEM")).map(warnSparkMem)).map(Utils.memoryStringToMb).getOrElse(1024)// Convert java options to env vars as a work around// since we can't set env vars directly in sbt.for { (envKey, propKey) <- Seq(("SPARK_TESTING", "spark.testing"))value <- Option(System.getenv(envKey)).orElse(Option(System.getProperty(propKey)))} {executorEnvs(envKey) = value}Option(System.getenv("SPARK_PREPEND_CLASSES")).foreach { v =>executorEnvs("SPARK_PREPEND_CLASSES") = v}// The Mesos scheduler backend relies on this environment variable to set executor memory.// TODO: Set this only in the Mesos scheduler.executorEnvs("SPARK_EXECUTOR_MEMORY") = executorMemory + "m"executorEnvs ++= _conf.getExecutorEnvexecutorEnvs("SPARK_USER") = sparkUser// We need to register "HeartbeatReceiver" before "createTaskScheduler" because Executor will// retrieve "HeartbeatReceiver" in the constructor. (SPARK-6640)_heartbeatReceiver = env.rpcEnv.setupEndpoint(HeartbeatReceiver.ENDPOINT_NAME, new HeartbeatReceiver(this))// Create and start the schedulerval (sched, ts) = SparkContext.createTaskScheduler(this, master)_schedulerBackend = sched_taskScheduler = ts_dagScheduler = new DAGScheduler(this)_heartbeatReceiver.ask[Boolean](TaskSchedulerIsSet)// start TaskScheduler after taskScheduler sets DAGScheduler reference in DAGScheduler's// constructor_taskScheduler.start()_applicationId = _taskScheduler.applicationId()_applicationAttemptId = taskScheduler.applicationAttemptId()_conf.set("spark.app.id", _applicationId)_ui.foreach(_.setAppId(_applicationId))_env.blockManager.initialize(_applicationId)// The metrics system for Driver need to be set spark.app.id to app ID.// So it should start after we get app ID from the task scheduler and set spark.app.id.metricsSystem.start()// Attach the driver metrics servlet handler to the web ui after the metrics system is started.metricsSystem.getServletHandlers.foreach(handler => ui.foreach(_.attachHandler(handler)))_eventLogger =if (isEventLogEnabled) {val logger =new EventLoggingListener(_applicationId, _applicationAttemptId, _eventLogDir.get,_conf, _hadoopConfiguration)logger.start()listenerBus.addListener(logger)Some(logger)} else {None}// Optionally scale number of executors dynamically based on workload. Exposed for testing.val dynamicAllocationEnabled = Utils.isDynamicAllocationEnabled(_conf)if (!dynamicAllocationEnabled && _conf.getBoolean("spark.dynamicAllocation.enabled", false)) {logWarning("Dynamic Allocation and num executors both set, thus dynamic allocation disabled.")}_executorAllocationManager =if (dynamicAllocationEnabled) {Some(new ExecutorAllocationManager(this, listenerBus, _conf))} else {None}_executorAllocationManager.foreach(_.start())_cleaner =if (_conf.getBoolean("spark.cleaner.referenceTracking", true)) {Some(new ContextCleaner(this))} else {None}_cleaner.foreach(_.start())setupAndStartListenerBus()postEnvironmentUpdate()postApplicationStart()// Post init_taskScheduler.postStartHook()_env.metricsSystem.registerSource(_dagScheduler.metricsSource)_env.metricsSystem.registerSource(new BlockManagerSource(_env.blockManager))_executorAllocationManager.foreach { e =>_env.metricsSystem.registerSource(e.executorAllocationManagerSource)}// Make sure the context is stopped if the user forgets about it. This avoids leaving// unfinished event logs around after the JVM exits cleanly. It doesn't help if the JVM// is killed, though._shutdownHookRef = ShutdownHookManager.addShutdownHook(ShutdownHookManager.SPARK_CONTEXT_SHUTDOWN_PRIORITY) { () =>logInfo("Invoking stop() from shutdown hook")stop()}} catch {case NonFatal(e) =>logError("Error initializing SparkContext.", e)try {stop()} catch {case NonFatal(inner) =>logError("Error stopping SparkContext after init error.", inner)} finally {throw e}}

这篇关于SparkContext 源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/365754

相关文章

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL