V-REP和Python的联合仿真

2023-11-07 13:44
文章标签 python 联合 仿真 rep

本文主要是介绍V-REP和Python的联合仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

机器人仿真软件 各类免费的的机器人仿真软件优缺点汇总_robot 仿真 软件收费么_dyannacon的博客-CSDN博客

课程地址 https://class.guyuehome.com/p/t_pc/course_pc_detail/column/p_605af87be4b007b4183a42e7

课程资料 guyueclass: 古月学院课程代码

旋转变换 旋转的左乘与右乘 - 知乎

四足机器人站立控制原理 【基础知识】四足机器人的站立姿态控制原理 - 知乎

单腿逆解参考 https://github.com/richardbloemenkamp/Robotdog

Vrep文档

Vrep放大object

Vrep 导入模型步骤:

1. plugins-->urdf import导入机器人URDF文件

2. 删除机器人对象中的world_joint和world_link_visual

3. 双击设置机器人参数

碰撞参数设置:body参数设置,自身碰撞勾选前四个勾,leg参数设置,自身碰撞勾选后四个勾,即不计算与自身的碰撞关系

设置关节参数

调节颜色

python联合仿真

remote API路径:C:\Program Files\CoppeliaRobotics\CoppeliaSimEdu\programming\remoteApiBindings

1. 选择仿真器

2. 创建Vrep脚本用于远程连接

3. 绑定脚本到机器人

4. 编辑脚本,添加远程连接代码

4. 编写python脚本并测试(将腿部足端位置转换为关节的角度)

连接V-REP需要从remote API路径拷贝相关文件

"""
连接VREP Server并测试控制四足机器人
"""
try:import sim
except ImportError:print('--------------------------------------------------------------')print('"sim.py" could not be imported. This means very probably that')print('either "sim.py" or the remoteApi library could not be found.')print('Make sure both are in the same folder as this file,')print('or appropriately adjust the file "sim.py"')print('--------------------------------------------------------------')print('')sim = Noneimport time
import numpy as npdef start_simulation():sim.simxFinish(-1)# 开启套接字与server进行通信clientID = sim.simxStart('127.0.0.1', 19999, True, True, 5000, 5)if clientID != -1:print('Connected to remote API server with ClientID ', clientID)# 开始模拟sim.simxStartSimulation(clientID, sim.simx_opmode_oneshot)return clientIDelse:return -1def get_joints(client_id):# 机器人电机力矩参数rotation_forces = [# RB[500, 500, 500],# RF[500, 500, 500],# LB[500, 500, 500],# LF[500, 500, 500]]# 获取机器人关节对象句柄rec, rb_rot_1 = sim.simxGetObjectHandle(client_id, 'rb_rot_1', sim.simx_opmode_blocking)rec, rb_rot_2 = sim.simxGetObjectHandle(client_id, 'rb_rot_2', sim.simx_opmode_blocking)rec, rb_rot_3 = sim.simxGetObjectHandle(client_id, 'rb_rot_3', sim.simx_opmode_blocking)rec, rf_rot_1 = sim.simxGetObjectHandle(client_id, 'rf_rot_1', sim.simx_opmode_blocking)rec, rf_rot_2 = sim.simxGetObjectHandle(client_id, 'rf_rot_2', sim.simx_opmode_blocking)rec, rf_rot_3 = sim.simxGetObjectHandle(client_id, 'rf_rot_3', sim.simx_opmode_blocking)rec, lb_rot_1 = sim.simxGetObjectHandle(client_id, 'lb_rot_1', sim.simx_opmode_blocking)rec, lb_rot_2 = sim.simxGetObjectHandle(client_id, 'lb_rot_2', sim.simx_opmode_blocking)rec, lb_rot_3 = sim.simxGetObjectHandle(client_id, 'lb_rot_3', sim.simx_opmode_blocking)rec, lf_rot_1 = sim.simxGetObjectHandle(client_id, 'lf_rot_1', sim.simx_opmode_blocking)rec, lf_rot_2 = sim.simxGetObjectHandle(client_id, 'lf_rot_2', sim.simx_opmode_blocking)rec, lf_rot_3 = sim.simxGetObjectHandle(client_id, 'lf_rot_3', sim.simx_opmode_blocking)# 设置电机力矩rec = sim.simxSetJointForce(client_id, rb_rot_1, rotation_forces[0][0], sim.simx_opmode_blocking)rec = sim.simxSetJointForce(client_id, rb_rot_2, rotation_forces[0][1], sim.simx_opmode_blocking)rec = sim.simxSetJointForce(client_id, rb_rot_3, rotation_forces[0][2], sim.simx_opmode_blocking)rec = sim.simxSetJointForce(client_id, rf_rot_1, rotation_forces[1][0], sim.simx_opmode_blocking)rec = sim.simxSetJointForce(client_id, rf_rot_2, rotation_forces[1][1], sim.simx_opmode_blocking)rec = sim.simxSetJointForce(client_id, rf_rot_3, rotation_forces[1][2], sim.simx_opmode_blocking)rec = sim.simxSetJointForce(client_id, lb_rot_1, rotation_forces[2][0], sim.simx_opmode_blocking)rec = sim.simxSetJointForce(client_id, lb_rot_2, rotation_forces[2][1], sim.simx_opmode_blocking)rec = sim.simxSetJointForce(client_id, lb_rot_3, rotation_forces[2][2], sim.simx_opmode_blocking)rec = sim.simxSetJointForce(client_id, lf_rot_1, rotation_forces[3][0], sim.simx_opmode_blocking)rec = sim.simxSetJointForce(client_id, lf_rot_2, rotation_forces[3][1], sim.simx_opmode_blocking)rec = sim.simxSetJointForce(client_id, lf_rot_3, rotation_forces[3][2], sim.simx_opmode_blocking)return [rb_rot_1, rb_rot_2, rb_rot_3], \[rf_rot_1, rf_rot_2, rf_rot_3], \[lb_rot_1, lb_rot_2, lb_rot_3], \[lf_rot_1, lf_rot_2, lf_rot_3]def leg_inverse_kine(x, y, z):# h,hu和hl分别是单条腿杆件的长度h = 0.15hu = 0.35hl = 0.382dyz = np.sqrt(y**2 + z**2)lyz = np.sqrt(dyz**2 - h**2)gamma_yz = -np.arctan(y/z)gamma_h_offset = -np.arctan(h/lyz)gamma = gamma_yz - gamma_h_offsetlxzp = np.sqrt(lyz**2 + x**2)n = (lxzp**2 - hl**2 - hu**2) / (2 * hu)beta = -np.arccos(n / hl)alfa_xzp = -np.arctan(x/lyz)alfa_off = np.arccos((hu + n) / lxzp)alfa = alfa_xzp + alfa_offreturn gamma, alfa, betaif __name__ == '__main__':# 机器人电机角度参数rb_poses = [40*np.pi/180, 0, 0]rf_poses = [0, 0, 0]lb_poses = [0, 0, 0]lf_poses = [0, 0, 0]client_id = start_simulation()if client_id != -1:joints = get_joints(client_id)rb_joints = joints[0]rf_joints = joints[1]lb_joints = joints[2]lf_joints = joints[3]time.sleep(1)timeout = 60start_time = time.time()curr_time = time.time()# 初始关节角度rb_poses = leg_inverse_kine(0, -0.3, -0.632)rf_poses = leg_inverse_kine(0, -0.3, -0.632)lb_poses = leg_inverse_kine(0, -0.3, -0.632)lf_poses = leg_inverse_kine(0, -0.3, -0.632)while curr_time - start_time < timeout:# 设置关节角度rec = sim.simxSetJointTargetPosition(client_id, rb_joints[0], -rb_poses[0], sim.simx_opmode_oneshot)rec = sim.simxSetJointTargetPosition(client_id, rb_joints[1], rb_poses[1], sim.simx_opmode_oneshot)rec = sim.simxSetJointTargetPosition(client_id, rb_joints[2], rb_poses[2], sim.simx_opmode_oneshot)rec = sim.simxSetJointTargetPosition(client_id, rf_joints[0], rf_poses[0], sim.simx_opmode_oneshot)rec = sim.simxSetJointTargetPosition(client_id, rf_joints[1], rf_poses[1], sim.simx_opmode_oneshot)rec = sim.simxSetJointTargetPosition(client_id, rf_joints[2], rf_poses[2], sim.simx_opmode_oneshot)rec = sim.simxSetJointTargetPosition(client_id, lb_joints[0], -lb_poses[0], sim.simx_opmode_oneshot)rec = sim.simxSetJointTargetPosition(client_id, lb_joints[1], lb_poses[1], sim.simx_opmode_oneshot)rec = sim.simxSetJointTargetPosition(client_id, lb_joints[2], lb_poses[2], sim.simx_opmode_oneshot)rec = sim.simxSetJointTargetPosition(client_id, lf_joints[0], lf_poses[0], sim.simx_opmode_oneshot)rec = sim.simxSetJointTargetPosition(client_id, lf_joints[1], lf_poses[1], sim.simx_opmode_oneshot)rec = sim.simxSetJointTargetPosition(client_id, lf_joints[2], lf_poses[2], sim.simx_opmode_oneshot)curr_time = time.time()# print("curr time :", curr_time - start_time)# 完成模拟sim.simxStopSimulation(client_id, sim.simx_opmode_blocking)sim.simxFinish(client_id)else:print('Failed connecting to remote API server')

显示足端轨迹

1. 打开shape编辑模式,并在vertex编辑模式下选择节点,在添加dummy

将dummy移动到腿部object下

2. 添加图用于创建curve

3. 设置3D Curve

4. 修改位置控制速度上限(将速度上限修改为500)

步态控制

utils.py

import sim
import numpy as npdef start_simulation():sim.simxFinish(-1)# 开启套接字与server进行通信clientID = sim.simxStart('127.0.0.1', 19999, True, True, 5000, 5)if clientID != -1:print('Connected to remote API server with ClientID ', clientID)# 开始模拟sim.simxStartSimulation(clientID, sim.simx_opmode_oneshot)return clientIDelse:return -1def get_joints(client_id):# 机器人电机力矩参数rotation_forces = [# RB[500, 500, 500],# RF[500, 500, 500],# LB[500, 500, 500],# LF[500, 500, 500]]# 获取机器人关节对象句柄rec, rb_rot_1 = sim.simxGetObjectHandle(client_id, 'rb_rot_1', sim.simx_opmode_blocking)rec, rb_rot_2 = sim.simxGetObjectHandle(client_id, 'rb_rot_2', sim.simx_opmode_blocking)rec, rb_rot_3 = sim.simxGetObjectHandle(client_id, 'rb_rot_3', sim.simx_opmode_blocking)rec, rf_rot_1 = sim.simxGetObjectHandle(client_id, 'rf_rot_1', sim.simx_opmode_blocking)rec, rf_rot_2 = sim.simxGetObjectHandle(client_id, 'rf_rot_2', sim.simx_opmode_blocking)rec, rf_rot_3 = sim.simxGetObjectHandle(client_id, 'rf_rot_3', sim.simx_opmode_blocking)rec, lb_rot_1 = sim.simxGetObjectHandle(client_id, 'lb_rot_1', sim.simx_opmode_blocking)rec, lb_rot_2 = sim.simxGetObjectHandle(client_id, 'lb_rot_2', sim.simx_opmode_blocking)rec, lb_rot_3 = sim.simxGetObjectHandle(client_id, 'lb_rot_3', sim.simx_opmode_blocking)rec, lf_rot_1 = sim.simxGetObjectHandle(client_id, 'lf_rot_1', sim.simx_opmode_blocking)rec, lf_rot_2 = sim.simxGetObjectHandle(client_id, 'lf_rot_2', sim.simx_opmode_blocking)rec, lf_rot_3 = sim.simxGetObjectHandle(client_id, 'lf_rot_3', sim.simx_opmode_blocking)# 设置电机力矩rec = sim.simxSetJointForce(client_id, rb_rot_1, rotation_forces[0][0], sim.simx_opmode_blocking)rec = sim.simxSetJointForce(client_id, rb_rot_2, rotation_forces[0][1], sim.simx_opmode_blocking)rec = sim.simxSetJointForce(client_id, rb_rot_3, rotation_forces[0][2], sim.simx_opmode_blocking)rec = sim.simxSetJointForce(client_id, rf_rot_1, rotation_forces[1][0], sim.simx_opmode_blocking)rec = sim.simxSetJointForce(client_id, rf_rot_2, rotation_forces[1][1], sim.simx_opmode_blocking)rec = sim.simxSetJointForce(client_id, rf_rot_3, rotation_forces[1][2], sim.simx_opmode_blocking)rec = sim.simxSetJointForce(client_id, lb_rot_1, rotation_forces[2][0], sim.simx_opmode_blocking)rec = sim.simxSetJointForce(client_id, lb_rot_2, rotation_forces[2][1], sim.simx_opmode_blocking)rec = sim.simxSetJointForce(client_id, lb_rot_3, rotation_forces[2][2], sim.simx_opmode_blocking)rec = sim.simxSetJointForce(client_id, lf_rot_1, rotation_forces[3][0], sim.simx_opmode_blocking)rec = sim.simxSetJointForce(client_id, lf_rot_2, rotation_forces[3][1], sim.simx_opmode_blocking)rec = sim.simxSetJointForce(client_id, lf_rot_3, rotation_forces[3][2], sim.simx_opmode_blocking)return [rb_rot_1, rb_rot_2, rb_rot_3], \[rf_rot_1, rf_rot_2, rf_rot_3], \[lb_rot_1, lb_rot_2, lb_rot_3], \[lf_rot_1, lf_rot_2, lf_rot_3]def leg_inverse_kine(x, y, z):"""求四足机器人单条腿的逆运动学,输入足端位置,返回单腿关节的旋转的角度"""# h,hu和hl分别是单条腿杆件的长度h = 0.15hu = 0.35hl = 0.382dyz = np.sqrt(y ** 2 + z ** 2)lyz = np.sqrt(dyz ** 2 - h ** 2)gamma_yz = -np.arctan(y / z)gamma_h_offset = -np.arctan(h / lyz)gamma = gamma_yz - gamma_h_offsetlxzp = np.sqrt(lyz ** 2 + x ** 2)n = (lxzp ** 2 - hl ** 2 - hu ** 2) / (2 * hu)beta = -np.arccos(n / hl)alfa_xzp = -np.arctan(x / lyz)alfa_off = np.arccos((hu + n) / lxzp)alfa = alfa_xzp + alfa_offreturn gamma, alfa, betadef pose_control(roll, pitch, yaw, pos_x, pos_y, pos_z):"""输入"""b = 0.4l = 0.8w = 0.7# 基座的高度h = 0.732# 转换角度R = roll * np.pi / 180P = pitch * np.pi / 180Y = yaw * np.pi / 180pos = np.mat([pos_x, pos_y, pos_z]).T# 定义旋转矩阵rotx = np.mat([[1, 0, 0],[0, np.cos(R), -np.sin(R)],[0, np.sin(R), np.cos(R)]])roty = np.mat([[np.cos(P), 0, -np.sin(P)],[0, 1, 0],[np.sin(P), 0, np.cos(P)]])rotz = np.mat([[np.cos(Y), -np.sin(Y), 0],[np.sin(Y), np.cos(Y), 0],[0, 0, 1]])rot_mat = rotx * roty * rotz# 基座位置body_struct = np.mat([[l / 2, b / 2, h],[l / 2, -b / 2, h],[-l / 2, b / 2, h],[-l / 2, -b / 2, h]]).T# 足端位置footpoint_struct = np.mat([[l / 2, w / 2, 0],[l / 2, -w / 2, 0],[-l / 2, w / 2, 0],[-l / 2, -w / 2, 0]]).Tleg_pose = np.mat(np.zeros((3, 4)))for i in range(4):leg_pose[:, i] = -pos - rot_mat * body_struct[:, i] + footpoint_struct[:, i]return np.squeeze(np.array(leg_pose[:, 3])), np.squeeze(np.array(leg_pose[:, 0])), \np.squeeze(np.array(leg_pose[:, 1])), np.squeeze(np.array(leg_pose[:, 2]))def cycloid(dt: float, period: float = 1.0, xs: float = -0.1, xf: float = 0.1, zs: float = -0.582, h: float = 0.1):"""计算摆线上在给定时间t处的坐标。参数:t (float): 当前时间点Ts (float): 摆线运动总时间,默认为1.0xs (float): 起始x坐标,默认为-0.1xf (float): 终点x坐标,默认为0.1zs (float): 起始z坐标,默认为-0.582h (float): 摆线垂直位移,默认为0.1返回:tuple[float, float]: xep和zep的坐标值"""sigma = 2 * np.pi * dt / periodx_p = (xf - xs) * ((sigma - np.sin(sigma)) / (2 * np.pi)) + xsy_p = h * (1 - np.cos(sigma)) / 2 + zsreturn x_p, y_pif __name__ == '__main__':for pos in pose_control(30, 0, 0, 0, 0, 0.732):print(pos)

main.py

import time
from utils import *walk_period = 1.0
trot_period = 0.4gait = 1def cal_phase(dt, T, factor, zs = -0.482, h = 0.15):if dt < T * factor:return cycloid(dt, period=T * factor, zs=zs, h=h)else:return 0.1 - 0.2 / (T * (1 - factor)) * (dt - T * factor), zsdef walk_gait(dt):zs = -0.482h = 0.15lb_dt = dt % walk_periodrf_dt = (dt + 0.25) % walk_periodrb_dt = (dt + 0.5) % walk_periodlf_dt = (dt + 0.75) % walk_periodlb_pos = cal_phase(lb_dt, T=walk_period, factor=0.25, zs=zs, h=h)rf_pos = cal_phase(rf_dt, T=walk_period, factor=0.25, zs=zs, h=h)rb_pos = cal_phase(rb_dt, T=walk_period, factor=0.25, zs=zs, h=h)lf_pos = cal_phase(lf_dt, T=walk_period, factor=0.25, zs=zs, h=h)return lb_pos, rf_pos, rb_pos, lf_posdef trot_gait(dt):zs = -0.482h = 0.1dt_1 = dt % trot_perioddt_2 = (dt + 0.2) % trot_periodpos_1 = cal_phase(dt_1, T=trot_period, factor=0.5, zs=zs, h=h)pos_2 = cal_phase(dt_2, T=trot_period, factor=0.5, zs=zs, h=h)return pos_1, pos_2if __name__ == '__main__':# 连接到V-REP服务器clientID = start_simulation()# 检查连接是否成功if clientID != -1:joints = get_joints(clientID)rb_joints = joints[0]rf_joints = joints[1]lb_joints = joints[2]lf_joints = joints[3]timeout = 60start_time = time.time()curr_time = start_timesim_start_time, sim_curr_time = None, Nonelb_pos, rf_pos, rb_pos, lf_pos = None, None, None, None# 获取仿真时间while curr_time - start_time < timeout:res, sim_curr_time = sim.simxGetFloatSignal(clientID, 'time', sim.simx_opmode_oneshot)if res == sim.simx_return_ok:if sim_start_time is None:sim_start_time = sim_curr_timeprint("time ", sim_curr_time - sim_start_time)if sim_start_time:dt = sim_curr_time - sim_start_timeif gait == 0:# dt = (sim_curr_time - sim_start_time) % walk_periodlb_pos, rf_pos, rb_pos, lf_pos = walk_gait(dt)elif gait == 1:# dt = (sim_curr_time - sim_start_time) % trot_periodpos_1, pos_2 = trot_gait(dt)lb_pos = pos_1rf_pos = pos_1rb_pos = pos_2lf_pos = pos_2# 从足端位置求解关节角度rb_pose = leg_inverse_kine(rb_pos[0], -0.15, rb_pos[1])rf_pose = leg_inverse_kine(rf_pos[0], -0.15, rf_pos[1])lb_pose = leg_inverse_kine(lb_pos[0], -0.15, lb_pos[1])lf_pose = leg_inverse_kine(lf_pos[0], -0.15, lf_pos[1])rec = sim.simxSetJointTargetPosition(clientID, rb_joints[0], -rb_pose[0], sim.simx_opmode_oneshot)rec = sim.simxSetJointTargetPosition(clientID, rb_joints[1], rb_pose[1], sim.simx_opmode_oneshot)rec = sim.simxSetJointTargetPosition(clientID, rb_joints[2], rb_pose[2], sim.simx_opmode_oneshot)rec = sim.simxSetJointTargetPosition(clientID, rf_joints[0], rf_pose[0], sim.simx_opmode_oneshot)rec = sim.simxSetJointTargetPosition(clientID, rf_joints[1], rf_pose[1], sim.simx_opmode_oneshot)rec = sim.simxSetJointTargetPosition(clientID, rf_joints[2], rf_pose[2], sim.simx_opmode_oneshot)rec = sim.simxSetJointTargetPosition(clientID, lb_joints[0], -lb_pose[0], sim.simx_opmode_oneshot)rec = sim.simxSetJointTargetPosition(clientID, lb_joints[1], lb_pose[1], sim.simx_opmode_oneshot)rec = sim.simxSetJointTargetPosition(clientID, lb_joints[2], lb_pose[2], sim.simx_opmode_oneshot)rec = sim.simxSetJointTargetPosition(clientID, lf_joints[0], lf_pose[0], sim.simx_opmode_oneshot)rec = sim.simxSetJointTargetPosition(clientID, lf_joints[1], lf_pose[1], sim.simx_opmode_oneshot)rec = sim.simxSetJointTargetPosition(clientID, lf_joints[2], lf_pose[2], sim.simx_opmode_oneshot)# 停止仿真并断开与V-REP的连接sim.simxStopSimulation(clientID, sim.simx_opmode_oneshot)sim.simxFinish(clientID)else:print("无法连接到V-REP")

walk步态

trot步态

这篇关于V-REP和Python的联合仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/364005

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核