PSP - 基于扩散生成模型预测蛋白质结构 EigenFold 算法与环境配置

本文主要是介绍PSP - 基于扩散生成模型预测蛋白质结构 EigenFold 算法与环境配置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/132357976

EigenFold

Paper: EigenFold: Generative Protein Structure Prediction with Diffusion Models

EigenFold 是用于蛋白质结构预测的扩散生成模型(即,已知序列 至 结构分布)。基于谐波扩散,将键约束纳入扩散建模框架,并且产生一个级联分辨率的生成过程。

  • 扩散生成模型 (Diffusion Generative Model):利用随机扩散过程,生成数据样本的机器学习模型。
  • 谐波扩散 (Harmonic Diffusion):考虑谐波势能对于扩散过程的影响的数学模型。
  • 键约束 (Bond Constraints):限制蛋白质中原子间距离和角度变化范围的物理条件。
  • 级联分辨率 (Cascading-Resolution) :从粗糙到精细,逐步提高生成结果质量的方法。
  • OmegaFold 嵌入向量(OmegaFold Embeddings):由 OmegaFold 模型产生的,表示蛋白质序列特征的向量。

关于 EigenFold,即:

We define a diffusion process that models the structure as a system of harmonic oscillators and which naturally induces a cascading-resolution generative process along the eigenmodes of the system.
扩散过程,即将结构模型化为谐振子 (Harmonic Oscillators) 系统,该过程自然地沿着系统的本征模式 (Eigenmodes),产生级联分辨率的生成过程。

EigenFold 算法重点:

  • 蛋白质结构生成的新方法: 基于扩散模型的生成式模型,可以从给定的蛋白质序列生成一组可能的结构。该模型利用 OmegaFold 的预训练嵌入和得分网络来学习蛋白质结构的概率分布。
  • 谐波扩散过程:定义新的扩散过程,将蛋白质结构建模为一系列谐振子,其势能为相邻残基之间的距离的二次函数。该过程可以保证采样的结构满足化学约束,并且可以沿着系统的本征模式进行投影,实现逐步精细化的生成过程。
  • 得分网络架构:使用基于 E3NN 的图神经网络作为得分网络,输入为残基坐标和 OmegaFold 嵌入向量,输出为梯度向量。该网络具有 SE(3) 等变性,保证最终模型密度也具有 SE(3) 不变性。

EigenFold GitHub: https://github.com/bjing2016/EigenFold


1. 结构预测

准备 new.csv 文件,预测 7skh.B 的结构,即:

# with columns name, seqres (see provided splits for examples) and run
name,valid_alphas,seq,head,resolution,deposition_date,release_date,structure_method,seqres,seqlen
7skh.B.pdb,220,NAPVFQQPHYEVVLDEGPDTINTSLITVQALDGTVTYAIVAGNIINTFRINKHTGVITAAKELDYEISHGRYTLIVTATDQCPILSHRLTSTTTVLVNVNDINDNVPTFPRDYEGPFDVTEGQPGPRVWTFLAHDRDSGPNGQVEYSVVDGDPLGEFVISPVEGVLRVRKDVELDRETIAFYNLTICARDRGVPPLSSTMLVGIRVLDINDNLEHHHHHH,cell adhesion,2.27,2021-10-20,2022-10-26,x-ray diffraction,MNAPVFQQPHYEVVLDEGPDTINTSLITVQALDLDEGPNGTVTYAIVAGNIINTFRINKHTGVITAAKELDYEISHGRYTLIVTATDQCPILSHRLTSTTTVLVNVNDINDNVPTFPRDYEGPFDVTEGQPGPRVWTFLAHDRDSGPNGQVEYSVVDGDPLGEFVISPVEGVLRVRKDVELDRETIAFYNLTICARDRGVPPLSSTMLVGIRVLDINDNLEHHHHHH,227

运行命令:

python make_embeddings.py --out_dir ./embeddings --splits mydata/new.csv
python inference.py --model_dir ./pretrained_model --ckpt epoch_7.pt --pdb_dir ./structures --embeddings_dir ./embeddings --embeddings_key name --elbo --num_samples 5 --alpha 1 --beta 3 --elbo_step 0.2 --splits mydata/new.csv

预测的蛋白质结构,如下:

  • EigenFold 算法只能预测 CA 骨架,其余需要填充。
  • 黄色是 EigenFold 的预测结构,蓝色是真实的 PDB 结构 (7skh.B)。

即:

Img


2. 环境配置

下载 GitHub 工程:

git clone git@github.com:bjing2016/EigenFold.git

2.1 配置 Docker 环境

构建 Docker 环境:

nvidia-docker run -it --name eigenfold-[your name] -v [nfs path]:[nfs path] af2:v1.02

预先配置 Docker 环境中的 conda 源 与 pip 源,加速下载过程,参考 开源可训练的蛋白质结构预测框架 OpenFold 的环境配置

如果安装错误,清空 conda 环境,建议使用 rsync 快速删除,即:

mkdir tmp
# rsync -a --delete tmp/ /opt/conda/envs/eigenfold
rsync --delete-before -d tmp-new/ esm2_3B_feat/
rm -rf /opt/conda/envs/eigenfold

配置 conda 环境,即:

# 安装 conda 环境
conda create -n eigenfold python=3.8
conda activate eigenfold

2.2 配置 PyTorch 系列包

安装 PyTorch,建议使用 conda 安装,而不是 pip 安装,参考 Installing Previous Versions of PyTorch 即:

# pip 安装异常,建议使用 conda 安装。
# pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch

预先测试 PyTorch 是否安装成功,即:

pythonimport torch
print(torch.__version__)  # 1.11.0
print(torch.cuda.is_available())  # True

再安装 PyTorch 相关包,一共 5 个包,即 torch-scattertorch-sparsetorch-clustertorch-spline-convtorch-geometric,建议逐个安装,排查问题,即:

pip install torch-scatter -f https://data.pyg.org/whl/torch-1.11.0+cu113.html
pip install torch-sparse -f https://data.pyg.org/whl/torch-1.11.0+cu113.html
pip install torch-cluster -f https://data.pyg.org/whl/torch-1.11.0+cu113.html
pip install torch-spline-conv -f https://data.pyg.org/whl/torch-1.11.0+cu113.html
pip install torch-geometric -f https://data.pyg.org/whl/torch-1.11.0+cu113.html

安装其他依赖包:

pip install e3nn pyyaml wandb biopython matplotlib pandas

2.3 配置 OmegaFold 依赖

安装 OmegaFold 依赖,即:

# 调用时,需要在 EigenFold 的根目录下。
wget https://helixon.s3.amazonaws.com/release1.pt
git clone https://github.com/bjing2016/OmegaFold
pip install --no-deps -e OmegaFold

注意需要预先下载 OmegaFold 的模型 release1.pt,大约 3 个 G左右。

OmegaFold GitHub: OmegaFold

This command will download the weight from https://helixon.s3.amazonaws.com/release1.pt to ~/.cache/omegafold_ckpt/model.pt and load the model

cd EigenFold
bypy info
bypy downfile /huggingface/eigenfold/omegafold-release1.pt model.pt

2.4 配置 TMScore 与 LDDT

安装 TMScore 与 LDDT,即:

mkdir /opt/bin
cd ~/binwget https://openstructure.org/static/lddt-linux.zip
unzip lddt-linux.zip
cp lddt-linux/lddt .
./lddt  # 测试wget https://zhanggroup.org/TM-score/TMscore.cpp
g++ -static -O3 -ffast-math -lm -o TMscore TMscore.cpp
./TMscore  # 测试export PATH="/opt/bin/:$PATH"

2.6 上传 Docker

提交 docker image,设置标签 (tag),以及上传 docker 至服务器,即:

# 提交 Tag
docker ps -l
docker commit [container id] eigenfold:v1.0# 准备远程 Tag
docker tag eigenfold:v1.0 harbor.[ip].com/[your name]/eigenfold:v1.0
docker images | grep "eigenfold"# 推送至远程
docker push harbor.[ip].com/[your name]/eigenfold:v1.0
# 从远程拉取
docker pull harbor.[ip].com/[your name]/eigenfold:v1.0# 或者保存至本地
docker save eigenfold:v1.0 | gzip > eigenfold_v1_0.tar.gz
# 加载已保存的 docker image
docker image load -i eigenfold_v1_0.tar.gz
docker images | grep "eigenfold"

BugFix

Bug1: torch_sparse 版本不兼容问题。

RuntimeError: 
object has no attribute sparse_csc_tensor:File "/opt/conda/envs/eigenfold/lib/python3.8/site-packages/torch_sparse/tensor.py", line 520value = torch.ones(self.nnz(), dtype=dtype, device=self.device())return torch.sparse_csc_tensor(colptr, row, value, self.sizes())~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE

参考: torch has no attribute sparse_csr_tensor

torch-sparse 降级至 0.6.14 版本,即可:

conda list torch-sparse
# packages in environment at /opt/conda/envs/eigenfold:
#
# Name                    Version                   Build  Channel
torch-sparse              0.6.17                   pypi_0    pypipip install torch-sparse==0.6.14 -f https://data.pyg.org/whl/torch-1.11.0+cu113.html

Bug2: Python 3.9 新特性不兼容问题

TypeError: unsupported operand type(s) for |: 'dict' and 'dict'

原因:What’s New In Python 3.9

方案1是升级至 Python3.9 版本,方案2是修改源码,位于EigenFold/utils/pdb.py,即:

# d[key] = {'CA': 'C'} | {key: val['symbol'] for key, val in atoms.items() if val['symbol'] != 'H' and key != 'CA'}
dict1 = {'CA': 'C'}
dict2 = {key: val['symbol'] for key, val in atoms.items() if val['symbol'] != 'H' and key != 'CA'}
d[key] = {**dict1, **dict2}

其余参考:

  • Linux 下删除大量文件效率对比,看谁删的快!

这篇关于PSP - 基于扩散生成模型预测蛋白质结构 EigenFold 算法与环境配置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/363358

相关文章

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

windos server2022的配置故障转移服务的图文教程

《windosserver2022的配置故障转移服务的图文教程》本文主要介绍了windosserver2022的配置故障转移服务的图文教程,以确保服务和应用程序的连续性和可用性,文中通过图文介绍的非... 目录准备环境:步骤故障转移群集是 Windows Server 2022 中提供的一种功能,用于在多个

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

关于Maven中pom.xml文件配置详解

《关于Maven中pom.xml文件配置详解》pom.xml是Maven项目的核心配置文件,它描述了项目的结构、依赖关系、构建配置等信息,通过合理配置pom.xml,可以提高项目的可维护性和构建效率... 目录1. POM文件的基本结构1.1 项目基本信息2. 项目属性2.1 引用属性3. 项目依赖4. 构

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d