PSP - 基于扩散生成模型预测蛋白质结构 EigenFold 算法与环境配置

本文主要是介绍PSP - 基于扩散生成模型预测蛋白质结构 EigenFold 算法与环境配置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/132357976

EigenFold

Paper: EigenFold: Generative Protein Structure Prediction with Diffusion Models

EigenFold 是用于蛋白质结构预测的扩散生成模型(即,已知序列 至 结构分布)。基于谐波扩散,将键约束纳入扩散建模框架,并且产生一个级联分辨率的生成过程。

  • 扩散生成模型 (Diffusion Generative Model):利用随机扩散过程,生成数据样本的机器学习模型。
  • 谐波扩散 (Harmonic Diffusion):考虑谐波势能对于扩散过程的影响的数学模型。
  • 键约束 (Bond Constraints):限制蛋白质中原子间距离和角度变化范围的物理条件。
  • 级联分辨率 (Cascading-Resolution) :从粗糙到精细,逐步提高生成结果质量的方法。
  • OmegaFold 嵌入向量(OmegaFold Embeddings):由 OmegaFold 模型产生的,表示蛋白质序列特征的向量。

关于 EigenFold,即:

We define a diffusion process that models the structure as a system of harmonic oscillators and which naturally induces a cascading-resolution generative process along the eigenmodes of the system.
扩散过程,即将结构模型化为谐振子 (Harmonic Oscillators) 系统,该过程自然地沿着系统的本征模式 (Eigenmodes),产生级联分辨率的生成过程。

EigenFold 算法重点:

  • 蛋白质结构生成的新方法: 基于扩散模型的生成式模型,可以从给定的蛋白质序列生成一组可能的结构。该模型利用 OmegaFold 的预训练嵌入和得分网络来学习蛋白质结构的概率分布。
  • 谐波扩散过程:定义新的扩散过程,将蛋白质结构建模为一系列谐振子,其势能为相邻残基之间的距离的二次函数。该过程可以保证采样的结构满足化学约束,并且可以沿着系统的本征模式进行投影,实现逐步精细化的生成过程。
  • 得分网络架构:使用基于 E3NN 的图神经网络作为得分网络,输入为残基坐标和 OmegaFold 嵌入向量,输出为梯度向量。该网络具有 SE(3) 等变性,保证最终模型密度也具有 SE(3) 不变性。

EigenFold GitHub: https://github.com/bjing2016/EigenFold


1. 结构预测

准备 new.csv 文件,预测 7skh.B 的结构,即:

# with columns name, seqres (see provided splits for examples) and run
name,valid_alphas,seq,head,resolution,deposition_date,release_date,structure_method,seqres,seqlen
7skh.B.pdb,220,NAPVFQQPHYEVVLDEGPDTINTSLITVQALDGTVTYAIVAGNIINTFRINKHTGVITAAKELDYEISHGRYTLIVTATDQCPILSHRLTSTTTVLVNVNDINDNVPTFPRDYEGPFDVTEGQPGPRVWTFLAHDRDSGPNGQVEYSVVDGDPLGEFVISPVEGVLRVRKDVELDRETIAFYNLTICARDRGVPPLSSTMLVGIRVLDINDNLEHHHHHH,cell adhesion,2.27,2021-10-20,2022-10-26,x-ray diffraction,MNAPVFQQPHYEVVLDEGPDTINTSLITVQALDLDEGPNGTVTYAIVAGNIINTFRINKHTGVITAAKELDYEISHGRYTLIVTATDQCPILSHRLTSTTTVLVNVNDINDNVPTFPRDYEGPFDVTEGQPGPRVWTFLAHDRDSGPNGQVEYSVVDGDPLGEFVISPVEGVLRVRKDVELDRETIAFYNLTICARDRGVPPLSSTMLVGIRVLDINDNLEHHHHHH,227

运行命令:

python make_embeddings.py --out_dir ./embeddings --splits mydata/new.csv
python inference.py --model_dir ./pretrained_model --ckpt epoch_7.pt --pdb_dir ./structures --embeddings_dir ./embeddings --embeddings_key name --elbo --num_samples 5 --alpha 1 --beta 3 --elbo_step 0.2 --splits mydata/new.csv

预测的蛋白质结构,如下:

  • EigenFold 算法只能预测 CA 骨架,其余需要填充。
  • 黄色是 EigenFold 的预测结构,蓝色是真实的 PDB 结构 (7skh.B)。

即:

Img


2. 环境配置

下载 GitHub 工程:

git clone git@github.com:bjing2016/EigenFold.git

2.1 配置 Docker 环境

构建 Docker 环境:

nvidia-docker run -it --name eigenfold-[your name] -v [nfs path]:[nfs path] af2:v1.02

预先配置 Docker 环境中的 conda 源 与 pip 源,加速下载过程,参考 开源可训练的蛋白质结构预测框架 OpenFold 的环境配置

如果安装错误,清空 conda 环境,建议使用 rsync 快速删除,即:

mkdir tmp
# rsync -a --delete tmp/ /opt/conda/envs/eigenfold
rsync --delete-before -d tmp-new/ esm2_3B_feat/
rm -rf /opt/conda/envs/eigenfold

配置 conda 环境,即:

# 安装 conda 环境
conda create -n eigenfold python=3.8
conda activate eigenfold

2.2 配置 PyTorch 系列包

安装 PyTorch,建议使用 conda 安装,而不是 pip 安装,参考 Installing Previous Versions of PyTorch 即:

# pip 安装异常,建议使用 conda 安装。
# pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch

预先测试 PyTorch 是否安装成功,即:

pythonimport torch
print(torch.__version__)  # 1.11.0
print(torch.cuda.is_available())  # True

再安装 PyTorch 相关包,一共 5 个包,即 torch-scattertorch-sparsetorch-clustertorch-spline-convtorch-geometric,建议逐个安装,排查问题,即:

pip install torch-scatter -f https://data.pyg.org/whl/torch-1.11.0+cu113.html
pip install torch-sparse -f https://data.pyg.org/whl/torch-1.11.0+cu113.html
pip install torch-cluster -f https://data.pyg.org/whl/torch-1.11.0+cu113.html
pip install torch-spline-conv -f https://data.pyg.org/whl/torch-1.11.0+cu113.html
pip install torch-geometric -f https://data.pyg.org/whl/torch-1.11.0+cu113.html

安装其他依赖包:

pip install e3nn pyyaml wandb biopython matplotlib pandas

2.3 配置 OmegaFold 依赖

安装 OmegaFold 依赖,即:

# 调用时,需要在 EigenFold 的根目录下。
wget https://helixon.s3.amazonaws.com/release1.pt
git clone https://github.com/bjing2016/OmegaFold
pip install --no-deps -e OmegaFold

注意需要预先下载 OmegaFold 的模型 release1.pt,大约 3 个 G左右。

OmegaFold GitHub: OmegaFold

This command will download the weight from https://helixon.s3.amazonaws.com/release1.pt to ~/.cache/omegafold_ckpt/model.pt and load the model

cd EigenFold
bypy info
bypy downfile /huggingface/eigenfold/omegafold-release1.pt model.pt

2.4 配置 TMScore 与 LDDT

安装 TMScore 与 LDDT,即:

mkdir /opt/bin
cd ~/binwget https://openstructure.org/static/lddt-linux.zip
unzip lddt-linux.zip
cp lddt-linux/lddt .
./lddt  # 测试wget https://zhanggroup.org/TM-score/TMscore.cpp
g++ -static -O3 -ffast-math -lm -o TMscore TMscore.cpp
./TMscore  # 测试export PATH="/opt/bin/:$PATH"

2.6 上传 Docker

提交 docker image,设置标签 (tag),以及上传 docker 至服务器,即:

# 提交 Tag
docker ps -l
docker commit [container id] eigenfold:v1.0# 准备远程 Tag
docker tag eigenfold:v1.0 harbor.[ip].com/[your name]/eigenfold:v1.0
docker images | grep "eigenfold"# 推送至远程
docker push harbor.[ip].com/[your name]/eigenfold:v1.0
# 从远程拉取
docker pull harbor.[ip].com/[your name]/eigenfold:v1.0# 或者保存至本地
docker save eigenfold:v1.0 | gzip > eigenfold_v1_0.tar.gz
# 加载已保存的 docker image
docker image load -i eigenfold_v1_0.tar.gz
docker images | grep "eigenfold"

BugFix

Bug1: torch_sparse 版本不兼容问题。

RuntimeError: 
object has no attribute sparse_csc_tensor:File "/opt/conda/envs/eigenfold/lib/python3.8/site-packages/torch_sparse/tensor.py", line 520value = torch.ones(self.nnz(), dtype=dtype, device=self.device())return torch.sparse_csc_tensor(colptr, row, value, self.sizes())~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE

参考: torch has no attribute sparse_csr_tensor

torch-sparse 降级至 0.6.14 版本,即可:

conda list torch-sparse
# packages in environment at /opt/conda/envs/eigenfold:
#
# Name                    Version                   Build  Channel
torch-sparse              0.6.17                   pypi_0    pypipip install torch-sparse==0.6.14 -f https://data.pyg.org/whl/torch-1.11.0+cu113.html

Bug2: Python 3.9 新特性不兼容问题

TypeError: unsupported operand type(s) for |: 'dict' and 'dict'

原因:What’s New In Python 3.9

方案1是升级至 Python3.9 版本,方案2是修改源码,位于EigenFold/utils/pdb.py,即:

# d[key] = {'CA': 'C'} | {key: val['symbol'] for key, val in atoms.items() if val['symbol'] != 'H' and key != 'CA'}
dict1 = {'CA': 'C'}
dict2 = {key: val['symbol'] for key, val in atoms.items() if val['symbol'] != 'H' and key != 'CA'}
d[key] = {**dict1, **dict2}

其余参考:

  • Linux 下删除大量文件效率对比,看谁删的快!

这篇关于PSP - 基于扩散生成模型预测蛋白质结构 EigenFold 算法与环境配置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/363358

相关文章

CentOS7更改默认SSH端口与配置指南

《CentOS7更改默认SSH端口与配置指南》SSH是Linux服务器远程管理的核心工具,其默认监听端口为22,由于端口22众所周知,这也使得服务器容易受到自动化扫描和暴力破解攻击,本文将系统性地介绍... 目录引言为什么要更改 SSH 默认端口?步骤详解:如何更改 Centos 7 的 SSH 默认端口1

Maven的使用和配置国内源的保姆级教程

《Maven的使用和配置国内源的保姆级教程》Maven是⼀个项目管理工具,基于POM(ProjectObjectModel,项目对象模型)的概念,Maven可以通过一小段描述信息来管理项目的构建,报告... 目录1. 什么是Maven?2.创建⼀个Maven项目3.Maven 核心功能4.使用Maven H

SpringBoot多数据源配置完整指南

《SpringBoot多数据源配置完整指南》在复杂的企业应用中,经常需要连接多个数据库,SpringBoot提供了灵活的多数据源配置方式,以下是详细的实现方案,需要的朋友可以参考下... 目录一、基础多数据源配置1. 添加依赖2. 配置多个数据源3. 配置数据源Bean二、JPA多数据源配置1. 配置主数据

Spring 基于XML配置 bean管理 Bean-IOC的方法

《Spring基于XML配置bean管理Bean-IOC的方法》:本文主要介绍Spring基于XML配置bean管理Bean-IOC的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录一. spring学习的核心内容二. 基于 XML 配置 bean1. 通过类型来获取 bean2. 通过

如何使用Nginx配置将80端口重定向到443端口

《如何使用Nginx配置将80端口重定向到443端口》这篇文章主要为大家详细介绍了如何将Nginx配置为将HTTP(80端口)请求重定向到HTTPS(443端口),文中的示例代码讲解详细,有需要的小伙... 目录1. 创建或编辑Nginx配置文件2. 配置HTTP重定向到HTTPS3. 配置HTTPS服务器

SpringBoot中配置Redis连接池的完整指南

《SpringBoot中配置Redis连接池的完整指南》这篇文章主要为大家详细介绍了SpringBoot中配置Redis连接池的完整指南,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以... 目录一、添加依赖二、配置 Redis 连接池三、测试 Redis 操作四、完整示例代码(一)pom.

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

如何在Mac上安装并配置JDK环境变量详细步骤

《如何在Mac上安装并配置JDK环境变量详细步骤》:本文主要介绍如何在Mac上安装并配置JDK环境变量详细步骤,包括下载JDK、安装JDK、配置环境变量、验证JDK配置以及可选地设置PowerSh... 目录步骤 1:下载JDK步骤 2:安装JDK步骤 3:配置环境变量1. 编辑~/.zshrc(对于zsh

售价599元起! 华为路由器X1/Pro发布 配置与区别一览

《售价599元起!华为路由器X1/Pro发布配置与区别一览》华为路由器X1/Pro发布,有朋友留言问华为路由X1和X1Pro怎么选择,关于这个问题,本期图文将对这二款路由器做了期参数对比,大家看... 华为路由 X1 系列已经正式发布并开启预售,将在 4 月 25 日 10:08 正式开售,两款产品分别为华