深入理解强化学习——多臂赌博机:10臂测试平台

2023-11-07 07:20

本文主要是介绍深入理解强化学习——多臂赌博机:10臂测试平台,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分类目录:《深入理解强化学习》总目录


为了大致评估贪心方法和 ϵ − \epsilon- ϵ贪心方法相对的有效性,我们将它们在一系列测试问题上进行了定量比较。这组问题是2000个随机生成的 k k k臂赌博机问题,且 k = 10 k=10 k=10。在每一个赌博机问题中,如下图显示的那样,动作的真实价值为 q ∗ ( a ) , a = 1 , 2 , ⋯ , 10 q_*(a), a=1, 2, \cdots, 10 q(a),a=1,2,,10,从一个均值为 0 0 0方差为 1 1 1的标准正态(高斯)分布中选择。当对应于该问题的学习方法在 t t t时刻选择 A t A_t At时,实际的收益 R t R_t Rt则由一个均值为 q ∗ ( A t ) q_*(A_t) q(At)方差为 1 1 1的正态分布决定。在下图中,这些分布显示为灰色区域。我们将这一系列测试任务称为10臂测试平台。对于任何学习方法,随着它在与一个赌博机问题的1000时刻交互中经验的积累,我们可以评估它的性能和动作。这构成了一轮试验。用2000个不同的赌博机问题独立重复2000个轮次的试验,我们就得到了对这个学习算法的平均表现的评估。
动作

下图在一个10臂测试平台上比较了上述的贪心方法和两种 ϵ − \epsilon- ϵ贪心方法( ϵ = 0.01 \epsilon=0.01 ϵ=0.01 ϵ = 0.1 \epsilon=0.1 ϵ=0.1)。所有方法都用采样平均策略来形成对动作价值的估计。上部的图显示了期望的收益随着经验的增长而增长。贪心方法在最初增长得略微快一些,但是随后稳定在一个较低的水平。相对于在这个测试平台上最好的可能收益 1.55 1.55 1.55,这个方法每时刻只获得了大约1的收益。从长远来看,贪心的方法表现明显更糟,因为它经常陷入执行次优的动作的怪圈。下部的图显示贪心方法只在大约三分之一的任务中找到最优的动作。在另外三分之二的动作中,最初采样得到的动作非常不好,贪心方法无法跳出来找到最优的动作。 ϵ − \epsilon- ϵ贪心方法最终表现更好,因为它们持续地试探并且提升找到最优动作的机会。 ϵ = 0.1 \epsilon=0.1 ϵ=0.1的方法试探得更多,通常更早发现最优的动作,但是在每时刻选择这个最优动作的概率却永远不会超过91%(因为要在 ϵ = 0.1 \epsilon=0.1 ϵ=0.1的情况下试探)。 ϵ = 0.01 \epsilon=0.01 ϵ=0.01的方法改善得更慢,但是在图中的两种测度下,最终的性能表现都会比 ϵ = 0.1 \epsilon=0.1 ϵ=0.1的方法更好。为了充分利用高和低的 ϵ \epsilon ϵ值的优势,随着时刻的推移来逐步减小 ϵ \epsilon ϵ也是可以的。
不同取值的表现
ϵ − \epsilon- ϵ贫心方法相对于贪心方法的优点依赖于任务。比方说,假设收益的方差更大,不是1而是10,由于收益的噪声更多,所以为了找到最优的动作需要更多次的试探,而 ϵ − \epsilon- ϵ贪心方法会比贪心方法好很多。但是,如果收益的方差是0,那么贪心方法会在尝试一次之后就知道每一个动作的真实价值。在这种情况下,贪心方法实际上可能表现最好,因为它很快就会找到最佳的动作,然后再也不会进行试探。但是,即使在有确定性的情况下,如果我们弱化一些假设,对试探也有很大的好处。例如,假设赌博机任务是非平稳的,也就是说,动作的真实价值会随着时间而变化。在这种情况下,即使在有确定性的情况下,试探也是需要的,这是为了确认某个非贪心的动作不会变得比贪心动作更好。如我们将在接下来的几章中所见,非平稳性是强化学习中最常遇到的情况。即使每一个单独的子任务都是平稳而且确定的,学习者也会面临一系列像赌博机一样的决策任务,每个子任务的决策随着学习的推进会有所变化,这使得智能体的整体策略也会不断变化。强化学习需要在开发和试探中取得平衡。

参考文献:
[1] 张伟楠, 沈键, 俞勇. 动手学强化学习[M]. 人民邮电出版社, 2022.
[2] Richard S. Sutton, Andrew G. Barto. 强化学习(第2版)[M]. 电子工业出版社, 2019
[3] Maxim Lapan. 深度强化学习实践(原书第2版)[M]. 北京华章图文信息有限公司, 2021
[4] 王琦, 杨毅远, 江季. Easy RL:强化学习教程 [M]. 人民邮电出版社, 2022

这篇关于深入理解强化学习——多臂赌博机:10臂测试平台的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/362081

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

流媒体平台/视频监控/安防视频汇聚EasyCVR播放暂停后视频画面黑屏是什么原因?

视频智能分析/视频监控/安防监控综合管理系统EasyCVR视频汇聚融合平台,是TSINGSEE青犀视频垂直深耕音视频流媒体技术、AI智能技术领域的杰出成果。该平台以其强大的视频处理、汇聚与融合能力,在构建全栈视频监控系统中展现出了独特的优势。视频监控管理系统EasyCVR平台内置了强大的视频解码、转码、压缩等技术,能够处理多种视频流格式,并以多种格式(RTMP、RTSP、HTTP-FLV、WebS

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

字节面试 | 如何测试RocketMQ、RocketMQ?

字节面试:RocketMQ是怎么测试的呢? 答: 首先保证消息的消费正确、设计逆向用例,在验证消息内容为空等情况时的消费正确性; 推送大批量MQ,通过Admin控制台查看MQ消费的情况,是否出现消费假死、TPS是否正常等等问题。(上述都是临场发挥,但是RocketMQ真正的测试点,还真的需要探讨) 01 先了解RocketMQ 作为测试也是要简单了解RocketMQ。简单来说,就是一个分

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖