51nod 1352 集合计数(扩展欧几里得的应用)

2023-11-07 04:58

本文主要是介绍51nod 1352 集合计数(扩展欧几里得的应用),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接:

http://www.51nod.com/Challenge/Problem.html#problemId=1352

1352 集合计数

给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足:第一个元素是A的倍数且第二个元素是B的倍数。

提示:

对于第二组测试数据,集合分别是:{1,10},{2,9},{3,8},{4,7},{5,6},{6,5},{7,4},{8,3},{9,2},{10,1}.满足条件的是第2个和第8个。


 收起

输入

第1行:1个整数T(1<=T<=50000),表示有多少组测试数据。
第2 - T+1行:每行三个整数N,A,B(1<=N,A,B<=2147483647)

输出

对于每组测试数据输出一个数表示满足条件的集合的数量,占一行。

输入样例

2
5 2 4
10 2 3

输出样例

1
2

思路:

因为A,B是告诉我们的,且第一个元素是A的倍数且第二个元素是B的倍数,所以由题意可以知道可以计算

A*x+B*y=n+1 (Ax和By 为已知的固定集合的某一个或者某几个组合)

这样可以使用扩展欧几里得求得最小的满足条件的x,也就可以求出最小满足条件的A*x,也就找到了最小的满足条件的一个固定集合的位置,

由题目中第二个样例的解释可以看出,每个满足题目的样例的位置相差为lcm(A, B) ,然后计算1--n的位置中由多少满足题意的位置数量,就是答案

This is the code:

#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<iomanip>
#include<list>
#include<map>
#include<queue>
#include<sstream>
#include<stack>
#include<string>
#include<set>
#include<vector>
using namespace std;
#define PI acos(-1.0)
#define pppp cout<<endl;
#define EPS 1e-8
#define LL long long
#define ULL unsigned long long     //1844674407370955161
#define INT_INF 0x3f3f3f3f      //1061109567
#define LL_INF 0x3f3f3f3f3f3f3f3f //4557430888798830399
// ios::sync_with_stdio(false);
// 那么cin, 就不能跟C的 scanf,sscanf, getchar, fgets之类的一起使用了。
const int dr[]={0, 0, -1, 1, -1, -1, 1, 1};
const int dc[]={-1, 1, 0, 0, -1, 1, -1, 1};
int read()//输入外挂
{int ret=0, flag=0;char ch;if((ch=getchar())=='-')flag=1;else if(ch>='0'&&ch<='9')ret = ch - '0';while((ch=getchar())>='0'&&ch<='9')ret=ret*10+(ch-'0');return flag ? -ret : ret;
}
LL extended_gcd(LL a,LL b,LL &x,LL &y)
{LL ret,temp;if(!b){x=1;y=0;return a;}ret=extended_gcd(b,a%b,x,y);
/*算法
p*a+q*b=GCD(a,b)=GCD(b,a%b)=p*b+q*a%b=p*b+q(a-a/b*b)=q*a+(p-a/b*q)b.
所以使用原数据计算出p-a/b*q=temp储存,
先让x=y,
然后y=temp;
*/temp=x-a/b*y;x=y;y=temp;//都是用变化之前的数据计算
/*一种常用的快速方法ret=extended_gcd(b,a%b,y,x);y-=a/b*x;
*/return ret;//返回最大公约数
}
//求线性同余方程
LL linearequation(LL a,LL b,LL c,LL &x,LL &y)
{LL gcd=extended_gcd(a,b,x,y);if(c%gcd)return 0;LL t=b/gcd;LL k=c/gcd;x*=k;//求解y*=k;//最小正整数解x=(x%t+t)%t;if(x==0)x+=t;return gcd;
}
int main()
{int t;scanf("%d",&t);while(t--){LL n,a,b;LL x,y;scanf("%lld%lld%lld",&n,&a,&b);LL gcd=linearequation(a,b,n+1,x,y);if(!gcd)printf("0\n");else{LL lcm=a/gcd*b;if(n<a*x)printf("0\n");elseprintf("%d\n",(n-a*x)/lcm+1);}}return 0;
}

 

这篇关于51nod 1352 集合计数(扩展欧几里得的应用)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/361391

相关文章

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

Java集合中的链表与结构详解

《Java集合中的链表与结构详解》链表是一种物理存储结构上非连续的存储结构,数据元素的逻辑顺序的通过链表中的引用链接次序实现,文章对比ArrayList与LinkedList的结构差异,详细讲解了链表... 目录一、链表概念与结构二、当向单链表的实现2.1 准备工作2.2 初始化链表2.3 打印数据、链表长

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

Java Stream 的 Collectors.toMap高级应用与最佳实践

《JavaStream的Collectors.toMap高级应用与最佳实践》文章讲解JavaStreamAPI中Collectors.toMap的使用,涵盖基础语法、键冲突处理、自定义Map... 目录一、基础用法回顾二、处理键冲突三、自定义 Map 实现类型四、处理 null 值五、复杂值类型转换六、处理

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布