ROC曲线 和 AUC 直白详解

2023-11-07 03:40
文章标签 详解 曲线 roc auc 直白

本文主要是介绍ROC曲线 和 AUC 直白详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ROC曲线

  • 定义

在信号检测理论中,接收者操作特征曲线receiver operating characteristic curve,或者叫ROC曲线)是一种坐标图式的分析工具,用于
(1) 选择最佳的信号侦测模型、舍弃次佳的模型。
(2) 在同一模型中设定最佳阈值。

这里我们只要记得 ROC曲线 主要是用来确定一个模型的 阈值。

  • 理解
    既然我们想要直白来理解 ROC曲线,那么例子是肯定少不了的:
    假设1:感冒有三种特征,咳嗽,发烧,流鼻涕。
    假设2:如果想确定一个人是否得了感冒,可以根据三种特征来打分,每个特征可以打 0-1 分。打分越高,得感冒概率越高。
    假设3:现在你是一个医生,有100个病人来看病,你需要根据这些人的三个感冒特征给他们打分,得到如下一组数据 (编号,分数)

    (1,2) (2,2.4) (2,0.4)....(100,3)
    

    假设4:我是一个神医,能百分百确定别人是否得了感冒。然后我看了你的报告,并给每个数据都给了确定的答案,所以数据就变成了(编号,是否真感冒,分数)(其中感冒60人,正常40人)

    (1,0,2) (2,1,2.4) (2,0,0.4)....(100,1,3)
    

    好了,现在问题来了,你是给每个病人打分了,病人也知道分数越高得感冒得概率越高,但是,到底得没得感冒却没有一个标准,这个标准就是上面说的 阈值,所以接下来就是要想办法确定这个 阈值或者标准了,那么我们采用办法呢?对于这种 二分类 问题的阈值,就是我们 ROC 曲线大展身手的时候了。

  • ROC 曲线 和 阈值

    • 阈值比较小的时候:
      如果我们认为打 1 分以上的就是感冒患者,那么只要有一点症状就可以确诊为感冒了,这时候100个人,确诊感冒的可能有 80 人,但是实际呢?可能80个人中只有50个是真感冒的,。如下图
    阈值=1诊断感冒诊断正常合计
    真感冒501060
    真正常301040
    合计8020100
    • 阈值比较大的时候:
      如果我们认为打 2 分以上的才是感冒患者,这时候100个人,确诊感冒的可能有 20 人,但是实际呢?真正感冒的可是60人,你确诊20个,可能其中还有一个是误诊呢?如下图
    阈值=2诊断感冒诊断正常合计
    真感冒194160
    真正常13940
    合计2080100
    • 那么我们期望的是阈值不大不小,换句话理解就是,我们希望得到一个使得 诊断感冒/真感冒 趋于 1(如果你感冒了,我们尽量确诊),诊断感冒/真正常 趋于 0(如果你正常,尽量不误诊)的阈值。在 ROC曲线中我们叫做 真阳率 和 假阳率

    • 所以我们一点点改变阈值,就可以得到一组又一组的 真阳率 和 假阳率 ,将这一组组 真阳率 和 假阳率在坐标轴上表示出来,就是我们要的 ROC曲线,通过图形化,我们就可以很直观的取一个合适的阈值了。(这个图只是随便在网上找的,可不是这个列子的图噢,我们大概看下 ROC曲线的 样子就好了,哈哈)

      2595955-3ffc11055524eac8.png
      roc.png

好了,到这里我们大概就讲了下 ROC曲线 的由来:主要就是为了方便我们直观的求一个合适的 阈值罢了,并没有什么太高深的东西,值得一提的是,ROC 是从 预测为真的角度来看待问题的,所以我们只需要考虑 诊断感冒 这个方面来计算:诊断感冒正确的 / 真感冒诊断感冒错误的 / 真正常

AUC

  • 定义
    1. ROC曲线 与 横轴 围城的曲边形的面积
    2. 将所有样本根据算法模型预测的打分进行升序排列,随机挑选一正一负两个样本,负样本排在正样本前面的概率
      只是看文字好像不是很好理解,可以结合上面那个例子来看一看就好理解了,我们跟所有来看病的人都有打分,按照打分给他们排个序,然后随机挑选一个真得感冒 和 一个 真正常的人,看一下是不是真正常的人排在前面,如果是,那么计数为1,进行 N 次实验,所有计数的累计和 为 n,那么 n/N 就是AUC的值了,顺便提一下,最理想的情况就是 n = N了,也意味着我们的打分已经完美

定义有两种,但是他们应该如何进行理解互通呢?笔者目前也不是很清楚,尝试推理了下,也不是很明白,这里就不敢班门弄斧了,如果有大佬理解,请不吝赐教!!!非常感谢!!!这里如果有感谢兴趣的朋友,也可以查看下 这篇博客,应该是我找到的比较有深度的 auc 的计算了

  • 为什么需要 AUC
    前面我们说了 ROC曲线 可以用来给一个模型确定阈值,那么 AUC 则是来评判一个 二分类的 模型的优劣。
    如果 AUC = 1:完美预测,基本不会存在的情况。
    如果 0.5 < AUC < 1:除了完美预测,那就乘这个区间的最有价值了。
    如果 AUC = 0.5:因为是二分类,随机猜测也就是这个概率了,完全就没有价值
    如果 AUC < 0.5:比随机猜测的概率还低!!!但是反过来说,非黑即白,如果取个反呢?

总的来说,不考虑最后一种情况,AUC当然是越大 越好,如果是最后一致情况,那当然是越小越好,因为我一旦取反,那么就和第一种情况一样啦。

  • AUC 计算
    首先还是这篇博客。

    其次,我想说的是,写AUC的博客那么多,为什么没人将工作中的计算方法说上来呢?所以这里我就贴一个工作中计算方式:
    1.首先我们计算AUC肯定得有一份打完分了的数据,假设数据auc.text,内容如下:

    -1    0.12
    -1    0.13
    -1    0.16 
    1     0.2
    -1    0.21
    -1    0.23
    1     0.3
    -1    0.32
    -1    0.35
    1     0.4
    -1    0.42
    -1    0.46
    1     0.5
    -1    0.51
    -1    0.53
    1     0.7
    1     1.1
    1     1.2
    1     1.2
    
    1. 计算方法
      cat auc.text |sort -k2n|awk '($1==-1){++x;a+=y}($1==1){++y}END{print 1.0-a/(x*y)}'
      通过一个简单的 awk 就可以得出来了,至于这个公式得原理,也很简单,就是完全遵循我们定义中的第二种方式得来的,详细的过程我就不啰嗦了,如果有疑问,欢迎留言咨询

好了,本文到此就结束啦!谢谢你的阅读!!!

这篇关于ROC曲线 和 AUC 直白详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/361011

相关文章

Java Predicate接口定义详解

《JavaPredicate接口定义详解》Predicate是Java中的一个函数式接口,它代表一个判断逻辑,接收一个输入参数,返回一个布尔值,:本文主要介绍JavaPredicate接口的定义... 目录Java Predicate接口Java lamda表达式 Predicate<T>、BiFuncti

详解如何通过Python批量转换图片为PDF

《详解如何通过Python批量转换图片为PDF》:本文主要介绍如何基于Python+Tkinter开发的图片批量转PDF工具,可以支持批量添加图片,拖拽等操作,感兴趣的小伙伴可以参考一下... 目录1. 概述2. 功能亮点2.1 主要功能2.2 界面设计3. 使用指南3.1 运行环境3.2 使用步骤4. 核

一文详解JavaScript中的fetch方法

《一文详解JavaScript中的fetch方法》fetch函数是一个用于在JavaScript中执行HTTP请求的现代API,它提供了一种更简洁、更强大的方式来处理网络请求,:本文主要介绍Jav... 目录前言什么是 fetch 方法基本语法简单的 GET 请求示例代码解释发送 POST 请求示例代码解释

详解nginx 中location和 proxy_pass的匹配规则

《详解nginx中location和proxy_pass的匹配规则》location是Nginx中用来匹配客户端请求URI的指令,决定如何处理特定路径的请求,它定义了请求的路由规则,后续的配置(如... 目录location 的作用语法示例:location /www.chinasem.cntestproxy

CSS will-change 属性示例详解

《CSSwill-change属性示例详解》will-change是一个CSS属性,用于告诉浏览器某个元素在未来可能会发生哪些变化,本文给大家介绍CSSwill-change属性详解,感... will-change 是一个 css 属性,用于告诉浏览器某个元素在未来可能会发生哪些变化。这可以帮助浏览器优化

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

详解C++中类的大小决定因数

《详解C++中类的大小决定因数》类的大小受多个因素影响,主要包括成员变量、对齐方式、继承关系、虚函数表等,下面就来介绍一下,具有一定的参考价值,感兴趣的可以了解一下... 目录1. 非静态数据成员示例:2. 数据对齐(Padding)示例:3. 虚函数(vtable 指针)示例:4. 继承普通继承虚继承5.

前端高级CSS用法示例详解

《前端高级CSS用法示例详解》在前端开发中,CSS(层叠样式表)不仅是用来控制网页的外观和布局,更是实现复杂交互和动态效果的关键技术之一,随着前端技术的不断发展,CSS的用法也日益丰富和高级,本文将深... 前端高级css用法在前端开发中,CSS(层叠样式表)不仅是用来控制网页的外观和布局,更是实现复杂交

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使