HDU - 1452 - Happy 2004 - (因子和,极性函数,同余逆元)

2023-11-06 23:49

本文主要是介绍HDU - 1452 - Happy 2004 - (因子和,极性函数,同余逆元),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转自:http://www.cnblogs.com/372465774y/archive/2012/10/22/2733977.html

Happy 2004

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 673    Accepted Submission(s): 481
Problem Description
Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your job is to determine S modulo 29 (the rest of the division of S by 29).

Take X = 1 for an example. The positive integer divisors of 2004^1 are 1, 2, 3, 4, 6, 12, 167, 334, 501, 668, 1002 and 2004. Therefore S = 4704 and S modulo 29 is equal to 6.
 
Input
The input consists of several test cases. Each test case contains a line with the integer X (1 <= X <= 10000000). A test case of X = 0 indicates the end of input, and should not be processed.
 
Output
For each test case, in a separate line, please output the result of S modulo 29.
 
Sample Input
1
10000
0
 
Sample Output
6
10
 
Source
ACM暑期集训队练习赛(六)
 
Recommend
lcy
求约数的和
首先 约束和函数是积性函数(就是如果m,n互质,则 f(mn)=f(m)f(n))还有约数个数函数也是积性函数 这2个比较好证明 直接带入就可以
S(x)代表x的约数和
S(20)=S(4)*S(5)
如果p是素数 S(p^n)=1+p+p^2+...p^n=(p^(n+1)-1)/(p-1);
所以本题 S(2004^x)=(2^(2*x+1)-1)(3^(x+1)-1)/2*(167^(x+1)-1)/166而又同余性质  : 若 a=b(mod m) 则 a^k=b^k (mod m):
所以 167可以用 22代替,(对29 同余)
对于  a^k*b^h*...%m的题目 直接二进制快速运算
这里还有个 a^k/d % m
这就相当于 a^k*d-1%m
d-1 是 d的模m逆  就是  dd-1=1 mod m  ...1
这样的话               a^k/b=x mod m ...2由1,2根据同余性质 a^k*d-1=x mod m
所以本题就Ok了

#include <iostream>
#include <map>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
using namespace std;
int Mod(int a,int b)
{int t;for(t=1;b>0;b>>=1,a=(a*a)%29)if(b&1) t=(t*a)%29;return t;
}
int main()
{int n;int a,b,c;while(scanf("%d",&n),n){a=(Mod(2,2*n+1)-1);b=(Mod(3,n+1)-1)*15; 15是2的mod 29逆c=(Mod(22,n+1)-1)*18;18是 21的mod 29逆printf("%d\n",a*b*c%29);}return 0;
}


另外参考:

乘法逆元,

http://blog.csdn.net/yeguxin/article/details/46669831

http://blog.sina.com.cn/s/blog_79b832820100xx20.html
http://blog.csdn.net/luyuncheng/article/details/8017016

这篇关于HDU - 1452 - Happy 2004 - (因子和,极性函数,同余逆元)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/359818

相关文章

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

kotlin的函数forEach示例详解

《kotlin的函数forEach示例详解》在Kotlin中,forEach是一个高阶函数,用于遍历集合中的每个元素并对其执行指定的操作,它的核心特点是简洁、函数式,适用于需要遍历集合且无需返回值的场... 目录一、基本用法1️⃣ 遍历集合2️⃣ 遍历数组3️⃣ 遍历 Map二、与 for 循环的区别三、高

C语言字符函数和字符串函数示例详解

《C语言字符函数和字符串函数示例详解》本文详细介绍了C语言中字符分类函数、字符转换函数及字符串操作函数的使用方法,并通过示例代码展示了如何实现这些功能,通过这些内容,读者可以深入理解并掌握C语言中的字... 目录一、字符分类函数二、字符转换函数三、strlen的使用和模拟实现3.1strlen函数3.2st

MySQL中COALESCE函数示例详解

《MySQL中COALESCE函数示例详解》COALESCE是一个功能强大且常用的SQL函数,主要用来处理NULL值和实现灵活的值选择策略,能够使查询逻辑更清晰、简洁,:本文主要介绍MySQL中C... 目录语法示例1. 替换 NULL 值2. 用于字段默认值3. 多列优先级4. 结合聚合函数注意事项总结C

Java8需要知道的4个函数式接口简单教程

《Java8需要知道的4个函数式接口简单教程》:本文主要介绍Java8中引入的函数式接口,包括Consumer、Supplier、Predicate和Function,以及它们的用法和特点,文中... 目录什么是函数是接口?Consumer接口定义核心特点注意事项常见用法1.基本用法2.结合andThen链

MySQL 日期时间格式化函数 DATE_FORMAT() 的使用示例详解

《MySQL日期时间格式化函数DATE_FORMAT()的使用示例详解》`DATE_FORMAT()`是MySQL中用于格式化日期时间的函数,本文详细介绍了其语法、格式化字符串的含义以及常见日期... 目录一、DATE_FORMAT()语法二、格式化字符串详解三、常见日期时间格式组合四、业务场景五、总结一、

golang panic 函数用法示例详解

《golangpanic函数用法示例详解》在Go语言中,panic用于触发不可恢复的错误,终止函数执行并逐层向上触发defer,最终若未被recover捕获,程序会崩溃,recover用于在def... 目录1. panic 的作用2. 基本用法3. recover 的使用规则4. 错误处理建议5. 常见错