使用yolov8训练数据集及使用中遇到的问题

2023-11-06 23:30

本文主要是介绍使用yolov8训练数据集及使用中遇到的问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.下载yolov8文件夹

下载链接

就是这个文件夹,别怕

 2.yolov8模型

下载链接,我下了yolov8s.py,放在该路径E:\nfshare\yolov8\ultralytics\weights

ps:model文件类型可以是yaml,也可以是pt

 3.修改yolov8.yaml文件

E:\nfshare\yolov8\ultralytics\cfg\models\v8\yolov8.yaml,就改类别数

nc: 9  # number of classes

4.新建data文件

 E:\nfshare\yolov8\ultralytics\cfg\datasets\hr.yaml,这些和yolov5一样

5.修改default.yaml文件

E:\nfshare\yolov8\ultralytics\cfg\default.yaml ,就动了以下几个参数

model: weights/yolov8s.pt  # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
data:  cfg/datasets/hr.yaml # (str, optional) path to data file, i.e. coco128.yaml
epochs: 1  # (int) number of epochs to train for
amp: False
batch: 8

 运行代码 yolo cfg=cfg/default.yaml

6.训练yolov8模型(train)

1.新建.py文件训练模型

在路径下新建python脚本文件\yolov8\ultralytics\demo.py,就像运行yolov5的模型一样,运行该脚本文件。

下面这些参数要怎么设置我还没懂。

#import sys
#sys.path.append("/home/yyt/nfshare/yolov8/")
from ultralytics import YOLO# Create a new YOLO model from scratch
#model = YOLO('/home/yyt/nfshare/yolov8/ultralytics/cfg/models/v8/yolov8.yaml')# Load a pretrained YOLO model (recommended for training)
model = YOLO('/home/yyt/nfshare/yolov8/ultralytics/weights/yolov8s.pt')# Train the model using the 'coco128.yaml' dataset for 3 epochs
results = model.train(data='/home/yyt/nfshare/yolov8/ultralytics/cfg/datasets/hr.yaml',amp=False,epochs=2,batch=8,val=True)# Evaluate the model's performance on the validation set
#results = model.val(data='/home/yyt/nfshare/yolov8/ultralytics/cfg/datasets/hr.yaml',amp=False,epochs=2,batch=8)success = model.export(format='onnx')

2.运行default.yaml文件训练模型

直接输入yolo cfg=/文件的路径/default.yaml

3.命令运行直接输:

yolo task=detect mode=train model=/yolov8/ultralytics/cfg/runs/detect/train6//weights/last.pt(模型位置,模型可以是.yaml形式或者.pt) data=/yolov8/ultralytics/cfg/datasets/hr.yaml(数据集.yaml文件位置) epochs=150 save=True resume=True (后面的都是参数,具体写什么看default.yaml里面你需要改什么)

7.测试训练后的模型(test)

1.运行default.yaml

修改default.yaml,运行代码和train一样

修改mode: val,model:/runs/detect/train6/weights/last.pt ,split: test 

2.代码运行

这个方法能显示test每张图片检测的结果

yolo predict model= '/home/yyt/nfshare/yolov8/ultralytics/cfg/runs/detect/train6/weights/last.pt'(模型路径) source= '/home/yyt/nfshare/zijianshujuji/image/test'(图片文件路径)

问题

1.box_loss   cls_loss   dfl_loss全显示为nan,map全为0

显卡问题,batch值太大

解决:在default.yaml中,改小batch值 ,amp改为False

2.val的box_loss、cls_loss、dfl_loss为0,train不为0

排查问题:

1.validator.py文件

为了解决问题1 result全显示为0,我删去了validator中的如下代码,恢复看看能不能跑通val

 self.args.half = self.device.type != 'cpu'  # force FP16 val during training

 失败

2.amp

amp改为ture,好的这个不能改,改了又都是nan

不是我瞎改的问题

尝试:

1.在trainer.py里面搜索half关键字,把所有有.half()变为.float()
            #'model': deepcopy(de_parallel(self.model)).half(),'model': deepcopy(de_parallel(self.model)).float(),#'ema': deepcopy(self.ema.ema).half(),'ema': deepcopy(self.ema.ema).float(),

 无效果

2.继续修改val.py,修改batch['img'].half()改为batch['img'].float()
#batch['img'] = (batch['img'].half() if self.args.half else batch['img'].float()) / 255batch['img'] = (batch['img'].float()) / 255

 3.继续修改validator.py

 不行

4.改小batch_size

batch_size=4

不行

解决:更新环境和其他安装包,pip install  -r requirement.txt

3.运行default.yaml,报错 ModuleNotFoundError: No module named 'ultralytics'

(yolov5) root@xxdell:/home/yyt/nfshare/yolov8/ultralytics# yolo cfg=/home/yyt/nfshare/yolov8/ultralytics/cfg/default.yaml
Traceback (most recent call last):File "/home/nephilim/environment/anaconda3/envs/yolov5/bin/yolo", line 5, in <module>from ultralytics.cfg import entrypoint
ModuleNotFoundError: No module named 'ultralytics'

解决方法:在/home/xx/environment/anaconda3/envs/yolov5/bin/yolo文件中添加路径

sys.path.append("/home/yyt/nfshare/yolov8/")

 再次运行,解决

4.训练结果runs文件保存路径改变

原本的训练结果保存在/home/yyt/nfshare/yolov8/runs 里面,即我的共享文件夹和yolov8存在的项目文件了,现在被更改了也不知道是怎么回事,前两次训练结果就没有出现。现在的文件夹路径在虚拟机的环境路径里/home/xx/environment/anaconda3/envs/yolov5/bin/runs/detect

感觉使用的不是yolov8,而是yolov5

(base) yyt@dell:/home/xx/environment/anaconda3/envs/yolov5/bin/runs/detect$ stat trainFile: trainSize: 4096          Blocks: 8          IO Block: 4096   directory
Device: 824h/2084d    Inode: 16883842    Links: 3
Access: (0755/drwxr-xr-x)  Uid: (    0/    root)   Gid: (    0/    root)
Access: 2023-08-21 15:02:27.587039861 +0800
Modify: 2023-08-21 14:59:15.937472731 +0800
Change: 2023-08-21 14:59:15.937472731 +0800

分析:

这几次运行的都是配置default.yaml,运行python文件,正常显示。


5.断网导致训练中断,继续训练

参考http://t.csdn.cn/UZRqy

命令行直接输入代码如下,模型改为之前跑的last.pt,epochs是总的训练次数

yolo task=detect mode=train model=/home/yyt/nfshare/yolov8/ultralytics/cfg/runs/detect/train6//weights/last.pt data=/home/yyt/nfshare/yolov8/ultralytics/cfg/datasets/hr.yaml epochs=150 save=True resume=True

6.ValueError: cannot convert float NaN to integer

训练完模型后,继续跑val测试,出现以下错误。

Validating runs/detect/train/weights/best.pt...
Ultralytics YOLOv8.0.173 🚀 Python-3.9.17 torch-2.0.1+cu117 CUDA:0 (NVIDIA GeForce GTX 1660 SUPER, 5928MiB)
Model summary (fused): 168 layers, 11129067 parameters, 0 gradientsClass     Images  Instances      Box(P          R      mAP50  mAP50-95):   1%|▏         | 1/78 [00:00<00:26,  2.87it/s]Exception in thread Thread-25:
Traceback (most recent call last):File "/home/nephilim/environment/anaconda3/envs/yolov5/lib/python3.9/threading.py", line 980, in _bootstrap_innerself.run()File "/home/nephilim/environment/anaconda3/envs/yolov5/lib/python3.9/threading.py", line 917, in runself._target(*self._args, **self._kwargs)File "/home/yyt/.local/lib/python3.9/site-packages/ultralytics/utils/plotting.py", line 446, in plot_imagesannotator.box_label(box, label, color=color)File "/home/yyt/.local/lib/python3.9/site-packages/ultralytics/utils/plotting.py", line 116, in box_labelself.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font)File "/home/nephilim/environment/anaconda3/envs/yolov5/lib/python3.9/site-packages/PIL/ImageDraw.py", line 556, in textdraw_text(ink)File "/home/nephilim/environment/anaconda3/envs/yolov5/lib/python3.9/site-packages/PIL/ImageDraw.py", line 496, in draw_textcoord.append(int(xy[i]))
ValueError: cannot convert float NaN to integerClass     Images  Instances      Box(P          R      mAP50  mAP50-95):   3%|▎         | 2/78 [00:01<00:44,  1.70it/s]Exception in thread Thread-27:
Traceback (most recent call last):File "/home/nephilim/environment/anaconda3/envs/yolov5/lib/python3.9/threading.py", line 980, in _bootstrap_innerself.run()File "/home/nephilim/environment/anaconda3/envs/yolov5/lib/python3.9/threading.py", line 917, in runself._target(*self._args, **self._kwargs)File "/home/yyt/.local/lib/python3.9/site-packages/ultralytics/utils/plotting.py", line 446, in plot_imagesannotator.box_label(box, label, color=color)File "/home/yyt/.local/lib/python3.9/site-packages/ultralytics/utils/plotting.py", line 116, in box_labelself.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font)File "/home/nephilim/environment/anaconda3/envs/yolov5/lib/python3.9/site-packages/PIL/ImageDraw.py", line 556, in textdraw_text(ink)File "/home/nephilim/environment/anaconda3/envs/yolov5/lib/python3.9/site-packages/PIL/ImageDraw.py", line 496, in draw_textcoord.append(int(xy[i]))

暂时没解决

7.关于requirements.txt安装文件的路径

这个默认安装路径一直让我很烦,安装前需要提前转到conda环境的路径下再运行命令

cd /home/111/yyt/anaconda3/envs/yolov8/lib/python3.10/site-packages(安装包路径)
pip install -r 路径/requirements.txt

参考这两篇文章http://t.csdn.cn/9edbL,http://t.csdn.cn/oJXMF,提前确定好自己的安装位置,免得找不到安装包。

8.command 'yolonot found ,did you mean:command 'rolo' from deb rolo 

类似找不到命令的情况在yolov8里很常见

参考http://t.csdn.cn/R6aQY

运行yolov8目录下的setup.py文件

python setup.py install

9.seaborn/_oldcore.py:1119:FuturwWarning:use_inf_as_na option is be removed in a future version.Cohvert inf values to NaN before operating instead: 

 未来预警,意思是seaborn/_oldcore.py:1119:FuturwWarning:use_inf_as_na 选项将在未来版本中删除。在操作之前将 inf 值转换为 NaN:

只要不是报错不管他。

10.AssertionError: /home/wsjdy/yyt/nfshare/yolov8/ultralytics/runs/detect/train5/weights/last.pt training to 150 epochs is finished, nothing to resume.

训练150轮结束后,想要继续训练,增加训练轮数

修改resume=True epochs=300 models=/上次训练的结果/last.pt 

结果显示报错如上。

尝试:yolov8断点恢复训练及减少训练次数和增加训练次数-CSDN博客

修改ultralytics/engine/trainer.py文件

修改self.epochs=想要训练的总次数,结果失败

尝试2:Yolov8断点续训/继续训练_q1224352995的博客-CSDN博客 失败

屈服了

直接把models改为last.pt,resume=False,epochs=150,在原有的基础上加训

这篇关于使用yolov8训练数据集及使用中遇到的问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/359713

相关文章

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖