关于消费端group大量提交offset写入__consumer_offsets导致broker cpu负载不均匀问题的处理

本文主要是介绍关于消费端group大量提交offset写入__consumer_offsets导致broker cpu负载不均匀问题的处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面

       与数据盘和内存相比,其实Kafka对计算处理能力的要求是相对较低的,不过它在一定程度上还是会影响整体的性能。

       随着整体业务数据量的提高(consumer端消费消息数量大致在500万-600万条/s),我们观察到各broker的cpu使用率也在不断提升,这种情况下一般会考虑去优化线上业务关于消息的生产、消费机制或是横向扩充集群broker节点数量。

       但是在日常维护工作中,我们发现到由于研发人员经常会因为下面一些问题增大kafka集群cpu不必要的浪费和开销。

1.生产端为了优化网络和磁盘空间,会对消息进行压缩。

      服务器需要对消息进行批量解压,设置偏移量,然后重新进行批量压缩,再保存到磁盘上。虽然压缩传输会提高集群整体吞吐量,但是随之而来的是cpu开销的大大提高,所以在集群接入数据量较大或是消费量很高的情况下,生产端不建议对消息开启压缩传输。

2.消费端同一groupID同时消费多个topic

__consumer_offsets是以groupID为单位,负责记录同一消费组内各consumer针对所消费topic所提交的offsets信息,这种大批量的频繁I/O操作其实对cpu的损耗也是非常高的,如果客户端使用同一groupID同时去消费众多业务topic,由于该groupID的offsets信息是随机分配到__consumer_offsets的某一个分区上,所以就会造成该分区所在broker节点cpu高于其他节点的现象。

关于__consumer_offsets的相关描述

      0.10版本之后的Kafka已将所有消费组各consumer提交的位移offset信息保存在kafka内部的topic中,即__consumer_offsets ,且这个topic是由kafka自动创建的,默认50个。__consumer_offsets中的消息保存了每个consumer group某一时刻提交的offset信息。格式大概如下:

 

关于LogSegment 

       在分区日志文件中,会有很多类型的文件,比如:.index、.timestamp、.log、.snapshot等,其中,文件名一致的文件集合就称为 LogSement,partition被分为多个segment文件进行存储。分区有利于topic的水平扩展与读写的负载均衡,而segment则有利于消息的快速定位和日志数据的清理。

        在命名规则上第一个segment文件名都是0,后续segment文件名是上一个segment文件最后一条消息的offset值,由于偏移量是一个 64 位的长整形数,固定是20位数字,如果长度未达到,用 0 进行填补,索引文件和日志文件都由该作为文件名命名规则。

.log文件: segment 日志文件

.index文件: segment offset索引文件,记录的是某条消息的offset和对应的物理位置

[root@form-kafka-01 __consumer_offsets-36]# ${KAFKA_HOME}/bin/kafka-dump-log.sh --files ./00000000042330624877.index |head -n 10
Dumping ./00000000042330624877.index
offset: 42330624918 position: 4167
offset: 42330624956 position: 8517
offset: 42330624989 position: 12621
offset: 42330625023 position: 16817
offset: 42330625057 position: 21043
offset: 42330625094 position: 25514
offset: 42330625125 position: 29648
offset: 42330625161 position: 33782
offset: 42330625192 position: 37947

.snapshot文件:segment 快照文件

.timeindex文件:segment timestamp索引文件

leader-epoch-checkpoint:用于副本备份机制,保存了每一任leader开始写入消息时的offset 会定时更新,follower被选为leader时会根据这个确定哪些消息可用

 

关于log.retention.bytes和log.segment.bytes参数
log.segment.bytes:控制每一个segment集合中.log日志文件的大小,超出该大小则针对其进行轮转,新数据将追加到新的日志segment文件中(-1表示没有限制) 

log.retention.bytes:日志数据存储的最大字节数。超过这个时间会根据log.cleanup.policy(delete|compact)设定的日志清理策略来处理数据。

[root@form-kafka-01 config]# egrep  "(log.retention.bytes|log.segment.bytes)" server.properties  |grep -v "#"
log.retention.bytes=1073741824
log.segment.bytes=1073741824

问题描述

      日常工作中,发现集群某一个broker的cpu平均使用率高于其他节点大约20个百分点,具体如下

问题节点cpu使用情况:

部分其他节点cpu使用状况:

问题发现

__consumer_offsets第19个分区相应segment分段日志文件的大小增长非常快,通过查看数据清理相关log也可以发现分段日志文件达到log.retention.bytes所设置的阈值大小100m的间隔也是非常短的,详细如下

所以猜测可能是提交offsets至该__consumer_offsets分区的某些group短时间提交太过频发所致

问题解决

既然consumer group将offsets提交记录数据写入到__consumer_offset该topic中,所以我们可以通过bin/kafka-console-consumer.sh来做统计分析。

[root@formal-midw-05 kafka]# source /etc/profile && ${KAFKA_HOME}/bin/kafka-console-consumer.sh \
--topic __consumer_offsets --partition 19  --bootstrap-server  192.168.1.1:9092  \ 
--formatter "kafka.coordinator.group.GroupMetadataManager\$OffsetsMessageFormatter" \>> /tmp/19.txt

发现该group_bigdata_consumer190912在大约20s内提交offset达到200多万次,相较于其他group,可以发现其提交次数太过频繁。

[root@form-kafka-03 tmp]# awk -F"," '{print $1}' /tmp/19.txt|sed 's/\[//' | sort | uniq -c |sort  -nk1
567 group_report_consumer200201
2335501 group_bigdata_consumer190912

进一步查取该消费组消费情况,发现如文章开头所说的情况,该groupID同时消费了10几个topic,造成针对偏移量的commit频率过高,所以需要通知研发人员进行整改,不同业务topic定义不同groupID去消费,我们这边暂时将__consumer_offsets-19分区手动迁移至其他cpu使用率较低的集群节点。

这篇关于关于消费端group大量提交offset写入__consumer_offsets导致broker cpu负载不均匀问题的处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/357573

相关文章

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模