Qt开发技术:Q3D图表开发笔记:Q3DSurface三维曲面图介绍、Demo以及代码详解

本文主要是介绍Qt开发技术:Q3D图表开发笔记:Q3DSurface三维曲面图介绍、Demo以及代码详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

  qt提供了q3d进行三维开发,虽然这个框架没有得到大量运用也不是那么成功,性能上也有很大的欠缺,但是普通的点到为止的应用展示还是可以的。
  其中就包括华丽绚烂的三维图表,数据量不大的时候是可以使用的。
  前面介绍了基础的q3d散点图、柱状图,本篇介绍基础的三维曲面图。

Demo:Q3DSurface散点图演示效果

  

在这里插入图片描述


  

在这里插入图片描述


  

在这里插入图片描述

Q3D提供的三维图表

  依赖QtDataVisualization。在安装qt的时候要选择安装QtDataVisualization模块。

Q3DScatter散点图

  Q3D的散点图,性能大约支撑1000个点可以不卡顿,具体依赖pc,1000个点是什么 概念,可以理解为:10x10x10的区域,每个区域一个数据点。
  

在这里插入图片描述

Q3DBars柱状图

  Q3D的柱状图,性能跟散点图类似。
   

在这里插入图片描述

Q3DSurface平面凹凸图,平面纹理图,平面曲线图

  Q3D的柱状图,性能跟散点图类似。
  

在这里插入图片描述

Q3DSurface平面曲线图

简介

  Q3DSurface类提供了渲染3D曲面图的方法。该类使开发人员能够渲染3D表面图,并通过自由旋转场景来查看它们。可以通过QSurface3DSeries控制曲面的视觉财产,例如绘制模式和着色。
  Q3DSurface通过在用户用鼠标左键点击的数据点上显示高亮显示的球(当使用默认输入处理程序时)或通过QSurface3DSeries进行选择来支持选择。选择指针附带一个标签,在默认情况下,该标签显示数据点的值和点的坐标。
轴上显示的值范围和标签格式可以通过QValue3DAxis进行控制。
  要旋转图形,请按住鼠标右键并移动鼠标。缩放是使用鼠标滚轮完成的。两者都假设默认的输入处理程序正在使用中。
  如果没有将任何轴明确设置为Q3DSurface,则会创建不带标签的临时默认轴。这些默认轴可以通过轴访问器进行修改,但只要明确设置了方向的任何轴,该方向的默认轴就会被破坏。

构造最小Q3D平面曲线图

  首先,构造Q3D曲面。由于在本例中,我们将图形作为顶级窗口运行,因此需要清除Qt::FramelessWindowHint标志,该标志在默认情况下设置:

Q3DSurface surface; 
surface.setFlags(surface.flags() ^ Qt::FramelessWindowHint);

  现在Q3DSurface已准备好接收要渲染的数据。创建数据元素以接收值:

QSurfaceDataArray *data = new QSurfaceDataArray;
QSurfaceDataRow *dataRow1 = new QSurfaceDataRow;
QSurfaceDataRow *dataRow2 = new QSurfaceDataRow;

  首先将数据喂给行元素,然后将它们的指针添加到数据元素:

*dataRow1 << QVector3D(0.0f, 0.1f, 0.5f) << QVector3D(1.0f, 0.5f, 0.5f);
*dataRow2 << QVector3D(0.0f, 1.8f, 1.0f) << QVector3D(1.0f, 1.2f, 1.0f);
*data << dataRow1 << dataRow2;、

  创建新系列并为其设置数据:

QSurface3DSeries *series = new QSurface3DSeries;
series->dataProxy()->resetArray(data);   
surface.addSeries(series);

  最后,设置为可见:

surface.show();

  创建和显示此图所需的完整代码为:

#include <QtDataVisualization>
using namespace QtDataVisualization;
int main(int argc, char **argv)
{QGuiApplication app(argc, argv);Q3DSurface surface;surface.setFlags(surface.flags() ^ Qt::FramelessWindowHint);QSurfaceDataArray *data = new QSurfaceDataArray;QSurfaceDataRow *dataRow1 = new QSurfaceDataRow;QSurfaceDataRow *dataRow2 = new QSurfaceDataRow;*dataRow1 << QVector3D(0.0f, 0.1f, 0.5f) << QVector3D(1.0f, 0.5f, 0.5f);*dataRow2 << QVector3D(0.0f, 1.8f, 1.0f) << QVector3D(1.0f, 1.2f, 1.0f);*data << dataRow1 << dataRow2;QSurface3DSeries *series = new QSurface3DSeries;series->dataProxy()->resetArray(data);surface.addSeries(series);surface.show();return app.exec();
}

  运行效果:
  

在这里插入图片描述

  场景可以被旋转、放大,并且可以选择一个项目来查看其位置,但在这个最小的代码示例中不包括其他交互。

Q3Ddemo构建流程解析

步骤一:确认安装QtDataVisualization模块

  如何确认,则是在帮助文件中查看是否有Q3dscatter类。一般是安装了模块才会有对应的帮助文件。没有则重新安装qt或者单独安装该模块。
  

在这里插入图片描述

步骤二:工程配置文件中加入模块

  Q3d是在数据可视化模块中,需要在pro或者pri配置文件中添加。

QT += datavisualization

  

在这里插入图片描述

步骤三:添加使用到的头文件

  使用到Q3DBar相关类中添加头文件,主要使用到Q3DBar、QBar3DSeries、QBarDataRow等等。

#include <Q3DBars>
#include <Q3DTheme>
#include <QBar3DSeries>
#include <QVector3D>

  

在这里插入图片描述

步骤四:添加命名空间

  这时候还是无法使用对应的类,需要添加命名空间才行:

using namespace QtDataVisualization;

  

在这里插入图片描述

步骤五:Q3D的图标基础构建框架

  下面是包含注释的Q3DSurface基础构建流程(注意轴的显示,查看末尾“入坑一”,注意数据的成面规则,查看“入坑二”

_pQ3DSurface = new Q3DSurface();
_pContainer = QWidget::createWindowContainer(_pQ3DSurface, this);
// 设置轴文本
{// 注意笛卡尔坐标_pQ3DSurface->axisX()->setTitle("经度(°)");_pQ3DSurface->axisX()->setTitleVisible(true);_pQ3DSurface->axisY()->setTitle("高度(m)");_pQ3DSurface->axisY()->setTitleVisible(true);_pQ3DSurface->axisZ()->setTitle("纬度(°)");_pQ3DSurface->axisZ()->setTitleVisible(true);
}
// 设置轴范围
{// 注意笛卡尔坐标_pQ3DSurface->axisX()->setRange(0, 359);_pQ3DSurface->axisY()->setRange(0, 100);_pQ3DSurface->axisZ()->setRange(0, 359);
}// 生成一个曲线
_pSurface3DSeries = new QSurface3DSeries(_pQ3DSurface);
// 设置渲染平滑
_pSurface3DSeries->setMeshSmooth(true);
// 设置渲染模式
//   DrawWireframe           : 绘制栅格
//   DrawSurface             : 绘制表面
//   DrawSurfaceAndWireframe : 绘制栅格和图表面
_pSurface3DSeries->setDrawMode(QSurface3DSeries::DrawSurface);// 视图添加该曲线
_pQ3DSurface->addSeries(_pSurface3DSeries);
// 设置阴影质量
_pQ3DSurface->setShadowQuality(QAbstract3DGraph::ShadowQualitySoftLow);
// 设置视角
_pQ3DSurface->scene()->activeCamera()->setCameraPreset(Q3DCamera::CameraPresetIsometricLeft);
// 设置子网格
_pQ3DSurface->activeTheme()->setGridEnabled(true);#if 1
// 添加模拟数据
QSurfaceDataArray *pSurfaceDataArray = new QSurfaceDataArray;
#if 1#if 1
// 这是 z 纬度
for(int n = 0; n < 360; n++)
{QSurfaceDataRow *pSurfaceDataRow  = new QSurfaceDataRow;// 这是 x 经度for(int m = 0; m < 360; m++){// 注意与笛卡尔坐标进行映射*pSurfaceDataRow << QVector3D(m, n / 7 + m / 7, n);}*pSurfaceDataArray << pSurfaceDataRow;
}
#else
for(int n = 0; n < 360; n++)
{QSurfaceDataRow *pSurfaceDataRow  = new QSurfaceDataRow;// 这是 x 经度for(int m = 0; m < 360; m++){// 注意与笛卡尔坐标进行映射*pSurfaceDataRow << QVector3D(m, qrand() % 100, n);LOG << n << m;}*pSurfaceDataArray << pSurfaceDataRow;
}
#endif
#else
QSurfaceDataRow *pSurfaceDataRow1  = new QSurfaceDataRow;
QSurfaceDataRow *pSurfaceDataRow2  = new QSurfaceDataRow;
QSurfaceDataRow *pSurfaceDataRow3  = new QSurfaceDataRow;
// 行与行之间,要形成一个四点成面
*pSurfaceDataRow1 << QVector3D(0, 0, 0)  << QVector3D(359, 20, 0);
*pSurfaceDataRow2 << QVector3D(50, 20, 179)  << QVector3D(359, 40, 179);
*pSurfaceDataRow3 << QVector3D(100, 80, 359)  << QVector3D(359, 100, 359);
*pSurfaceDataArray << pSurfaceDataRow1 << pSurfaceDataRow2 << pSurfaceDataRow3;
#endif
// 添加数据(自动冲掉之前的数据)
_pSurface3DSeries->dataProxy()->resetArray(pSurfaceDataArray);
#endif
_pQ3DSurface->addSeries(_pSurface3DSeries);
_pQ3DSurface->show();

Demo源码

Q3dSurfaceWidget.h

#ifndef Q3DSURFACEWIDGET_H
#define Q3DSURFACEWIDGET_H#include <QWidget>
#include <Q3DSurface>
#include <Q3DTheme>
#include <QSurface3DSeries>
#include <QVector3D>using namespace QtDataVisualization;namespace Ui {
class Q3dSurfaceWidget;
}class Q3dSurfaceWidget : public QWidget
{Q_OBJECTpublic:explicit Q3dSurfaceWidget(QWidget *parent = 0);~Q3dSurfaceWidget();protected:void initControl();protected:void resizeEvent(QResizeEvent *event);private:Ui::Q3dSurfaceWidget *ui;private:Q3DSurface *_pQ3DSurface;          // q3d平面曲线图QWidget *_pContainer;           // q3d窗口容器QSurface3DSeries  *_pSurface3DSeries ;    // q3d柱状图数据
};#endif // Q3DSURFACEWIDGET_H

Q3dSurfaceWidget.cpp

#include "Q3dSurfaceWidget.h"
#include "ui_Q3dSurfaceWidget.h"
#include <Q3DTheme>#include <QDebug>
#include <QDateTime>
//#define LOG qDebug()<<__FILE__<<__LINE__
//#define LOG qDebug()<<__FILE__<<__LINE__<<__FUNCTION__
//#define LOG qDebug()<<__FILE__<<__LINE__<<QThread()::currentThread()
//#define LOG qDebug()<<__FILE__<<__LINE__<<QDateTime::currentDateTime().toString("yyyy-MM-dd")
#define LOG qDebug()<<__FILE__<<__LINE__<<QDateTime::currentDateTime().toString("yyyy-MM-dd hh:mm:ss:zzz")Q3dSurfaceWidget::Q3dSurfaceWidget(QWidget *parent) :QWidget(parent),ui(new Ui::Q3dSurfaceWidget),_pQ3DSurface(0),_pContainer(0),_pSurface3DSeries(0)
{ui->setupUi(this);QString version = "v1.0.0";initControl();
}Q3dSurfaceWidget::~Q3dSurfaceWidget()
{delete ui;
}void Q3dSurfaceWidget::initControl()
{_pQ3DSurface = new Q3DSurface();_pContainer = QWidget::createWindowContainer(_pQ3DSurface, this);// 设置轴文本{// 注意笛卡尔坐标_pQ3DSurface->axisX()->setTitle("经度(°)");_pQ3DSurface->axisX()->setTitleVisible(true);_pQ3DSurface->axisY()->setTitle("高度(m)");_pQ3DSurface->axisY()->setTitleVisible(true);_pQ3DSurface->axisZ()->setTitle("纬度(°)");_pQ3DSurface->axisZ()->setTitleVisible(true);}// 设置轴范围{// 注意笛卡尔坐标_pQ3DSurface->axisX()->setRange(0, 359);_pQ3DSurface->axisY()->setRange(0, 100);_pQ3DSurface->axisZ()->setRange(0, 359);}// 生成一个曲线_pSurface3DSeries = new QSurface3DSeries(_pQ3DSurface);// 设置渲染平滑_pSurface3DSeries->setMeshSmooth(true);// 设置渲染模式//   DrawWireframe           : 绘制栅格//   DrawSurface             : 绘制表面//   DrawSurfaceAndWireframe : 绘制栅格和图表面_pSurface3DSeries->setDrawMode(QSurface3DSeries::DrawSurface);// 视图添加该曲线_pQ3DSurface->addSeries(_pSurface3DSeries);// 设置阴影质量_pQ3DSurface->setShadowQuality(QAbstract3DGraph::ShadowQualitySoftLow);// 设置视角_pQ3DSurface->scene()->activeCamera()->setCameraPreset(Q3DCamera::CameraPresetIsometricLeft);// 设置子网格_pQ3DSurface->activeTheme()->setGridEnabled(true);#if 1// 添加模拟数据QSurfaceDataArray *pSurfaceDataArray = new QSurfaceDataArray;
#if 1#if 1// 这是 z 纬度for(int n = 0; n < 360; n++){QSurfaceDataRow *pSurfaceDataRow  = new QSurfaceDataRow;// 这是 x 经度for(int m = 0; m < 360; m++){// 注意与笛卡尔坐标进行映射*pSurfaceDataRow << QVector3D(m, n / 7 + m / 7, n);}*pSurfaceDataArray << pSurfaceDataRow;}
#elsefor(int n = 0; n < 360; n++){QSurfaceDataRow *pSurfaceDataRow  = new QSurfaceDataRow;// 这是 x 经度for(int m = 0; m < 360; m++){// 注意与笛卡尔坐标进行映射*pSurfaceDataRow << QVector3D(m, qrand() % 100, n);LOG << n << m;}*pSurfaceDataArray << pSurfaceDataRow;}
#endif
#elseQSurfaceDataRow *pSurfaceDataRow1  = new QSurfaceDataRow;QSurfaceDataRow *pSurfaceDataRow2  = new QSurfaceDataRow;QSurfaceDataRow *pSurfaceDataRow3  = new QSurfaceDataRow;// 行与行之间,要形成一个四点成面*pSurfaceDataRow1 << QVector3D(0, 0, 0)  << QVector3D(359, 20, 0);*pSurfaceDataRow2 << QVector3D(50, 20, 179)  << QVector3D(359, 40, 179);*pSurfaceDataRow3 << QVector3D(100, 80, 359)  << QVector3D(359, 100, 359);*pSurfaceDataArray << pSurfaceDataRow1 << pSurfaceDataRow2 << pSurfaceDataRow3;
#endif// 添加数据(自动冲掉之前的数据)_pSurface3DSeries->dataProxy()->resetArray(pSurfaceDataArray);#endif_pQ3DSurface->addSeries(_pSurface3DSeries);_pQ3DSurface->show();}void Q3dSurfaceWidget::resizeEvent(QResizeEvent *event)
{if(_pContainer){_pContainer->setGeometry(rect());}
}

工程模板v1.2.0

  

在这里插入图片描述

入坑

入坑一:xyz坐标系不对

问题

  x精度,y维度,z高度(海拔高度)映射错误
  

在这里插入图片描述

原因

  x,y,z实际是遵循笛卡尔坐标集

解决

  先理解坐标,然后z轴方向,数据也要替换(按照x,y,z来排列,改为x,z,y)
 &emso;

在这里插入图片描述

入坑二:曲面显示不对

问题

  数据显示映射错误 

原因

  点成面,需要遵循4点成面的规则,和opengl相关3点成面和4点成面的原理类似。
  

在这里插入图片描述

  

在这里插入图片描述


  

解决

  相邻行与行之间,要形成面,修改后展示如下:

  

在这里插入图片描述


  

在这里插入图片描述

这篇关于Qt开发技术:Q3D图表开发笔记:Q3DSurface三维曲面图介绍、Demo以及代码详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/357232

相关文章

Java中有什么工具可以进行代码反编译详解

《Java中有什么工具可以进行代码反编译详解》:本文主要介绍Java中有什么工具可以进行代码反编译的相关资,料,包括JD-GUI、CFR、Procyon、Fernflower、Javap、Byte... 目录1.JD-GUI2.CFR3.Procyon Decompiler4.Fernflower5.Jav

golang panic 函数用法示例详解

《golangpanic函数用法示例详解》在Go语言中,panic用于触发不可恢复的错误,终止函数执行并逐层向上触发defer,最终若未被recover捕获,程序会崩溃,recover用于在def... 目录1. panic 的作用2. 基本用法3. recover 的使用规则4. 错误处理建议5. 常见错

pycharm远程连接服务器运行pytorch的过程详解

《pycharm远程连接服务器运行pytorch的过程详解》:本文主要介绍在Linux环境下使用Anaconda管理不同版本的Python环境,并通过PyCharm远程连接服务器来运行PyTorc... 目录linux部署pytorch背景介绍Anaconda安装Linux安装pytorch虚拟环境安装cu

一文详解如何在Python中使用Requests库

《一文详解如何在Python中使用Requests库》:本文主要介绍如何在Python中使用Requests库的相关资料,Requests库是Python中常用的第三方库,用于简化HTTP请求的发... 目录前言1. 安装Requests库2. 发起GET请求3. 发送带有查询参数的GET请求4. 发起PO

Python进行PDF文件拆分的示例详解

《Python进行PDF文件拆分的示例详解》在日常生活中,我们常常会遇到大型的PDF文件,难以发送,将PDF拆分成多个小文件是一个实用的解决方案,下面我们就来看看如何使用Python实现PDF文件拆分... 目录使用工具将PDF按页数拆分将PDF的每一页拆分为单独的文件将PDF按指定页数拆分根据页码范围拆分

Java中的Cursor使用详解

《Java中的Cursor使用详解》本文介绍了Java中的Cursor接口及其在大数据集处理中的优势,包括逐行读取、分页处理、流控制、动态改变查询、并发控制和减少网络流量等,感兴趣的朋友一起看看吧... 最近看代码,有一段代码涉及到Cursor,感觉写法挺有意思的。注意是Cursor,而不是Consumer

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

Vue ElementUI中Upload组件批量上传的实现代码

《VueElementUI中Upload组件批量上传的实现代码》ElementUI中Upload组件批量上传通过获取upload组件的DOM、文件、上传地址和数据,封装uploadFiles方法,使... ElementUI中Upload组件如何批量上传首先就是upload组件 <el-upl

SpringBoot项目注入 traceId 追踪整个请求的日志链路(过程详解)

《SpringBoot项目注入traceId追踪整个请求的日志链路(过程详解)》本文介绍了如何在单体SpringBoot项目中通过手动实现过滤器或拦截器来注入traceId,以追踪整个请求的日志链... SpringBoot项目注入 traceId 来追踪整个请求的日志链路,有了 traceId, 我们在排

Java实战之利用POI生成Excel图表

《Java实战之利用POI生成Excel图表》ApachePOI是Java生态中处理Office文档的核心工具,这篇文章主要为大家详细介绍了如何在Excel中创建折线图,柱状图,饼图等常见图表,需要的... 目录一、环境配置与依赖管理二、数据源准备与工作表构建三、图表生成核心步骤1. 折线图(Line Ch