【在路上3】大数据离线分析快递的派件时效

2023-11-06 08:18

本文主要是介绍【在路上3】大数据离线分析快递的派件时效,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【在路上1】快递物流大数据的由来

【在路上2】快递的运单轨迹

几乎人人都用过快递,如果说用户最在意什么?那必然是谁家送得快!这也是整个快递物流行业被诟病最多的地方。

都知道顺丰送得快,但价格摆在那里,且它的市场份额不到十分之一。也有许多热心用户质疑,广州到上海开车就18个小时不到,快递怎么样都不可能要四五天(2016年以前),收货1天,运输1天,分拣派件1天,标准时长应该是3天才对,今发后至!这个分析很中肯,同时也是我们自己的疑问,只是无从查起!

很多人都干过一件事,网购以后,每天刷新多次物流轨迹,看看宝贝到哪了。如果上午就到了上海,而下午没有拿到手,大多数人都会发火!

2016年,有了初步的大数据(此时没有任何积累),在高层领导决策下,我们选择了末端派件这么一个环节来进行时效分析。

针对过去一个月进入上海的全部包裹进行数据分析,看看每个网点派件时长,横向对比其它网点,纵向对比该网点不同日期。

咱们用专业术语再来一次:

1,准备20160301至20160407全量签收数据,签收表独立,入库时间作为索引,考虑上传延迟多跑几天。

2,过滤签收网点位于上海,且签收时间位于3月份的数据。签收后可能过1~48小时才会上传入库,所以签收时间不等于入库时间。

3,按照中心发出日期加网点的维度,统计每个网点每天应派件量(中心发出),实际派件量(网点签收),平均时效(签收时间减去中心发出时间)

4,根据坐标计算网点到中心的驾驶时长,留出2小时作为回去后的分拣操作时间,就得到网点实际应该达到的派件时效

所有进入上海的件,在上海中心交给派件网点之前,都会做一次发件扫描,最终派件网点会做签收扫描。

按照这个逻辑,借助Oracle一体机的存储过程跑了一份数据。此时上海全天派件量10万票左右,整个3月份两三百万,跑起来难度不大。

很显然,这份数据根本就没法看!这是纯技术思维考虑的方案,尽管考虑到多跑一段,但是快递业务根本就不是这样的!!!

整个3月份的总量是差不多的,平均时效也偏差不大,问题就在于统计日期,完全错了!

要知道,每天14:30以后到达上海的件,会留到第二天早上6点,作为一派件由网点车拉回去,6:00到12:30作为二派,12:30到14:30作为三派,网点一共会来拉三次件。这里问题最大的就在于一派前半截,下午才到,网点即使拉回去也派不掉,傍晚还得去收件分拣打包。

因此,重新调整了统计日期计算规则,才得到了一份初步数据,以派件任务的视角来查看。这说明,光有技术不行,还得深入到业务之中去。

然而事情并不会那么顺利。拿这份数据去跟网点沟通的时候,才发现自己是多么的幼稚!前面说到,网点会派三次车去中心拉件,这是理想情况。实际上部分网点不会这么操作,比如,几个网点共用一辆车,又比如,二派的车在12:30故意不走,等到13:30,顺带拉走大部分三派的件,等等等!这都是为了节省成本啊,每个人都可以找出成千上万个理由,为派件不及时而辩解,实际上有没有派件不力,就掩盖在其中!

项目就此进入僵局!欲听如何破局,请听下回分解!

这一节进入实战,遇到了许多实实在在的意想不到的问题:

1,采集数据延迟上传,导致业余时间远小于入库时间。而为了能够单向分析以及数据准确性,就得用入库时间作为索引,在目标数据区间前后多跑一段数据。

2,结合快递业务,绝大部分包裹的生命周期在7天以内,因为多跑7天数据。

3,快递有一二三派,不同城市要求不同

---以上所述并非完全真实准确,为了便于书写,把不同时间点发生的事情略微调整。

作者认为,最有价值的应该是大数据落地这么一个过程,如果借助技术去攻城拔寨!

今天除夕,躲在山沟沟里用手机码字实属不易,如果喜欢,帮忙转发一下!

提前祝大家新年快乐!

这篇关于【在路上3】大数据离线分析快递的派件时效的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/355489

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

在Mysql环境下对数据进行增删改查的操作方法

《在Mysql环境下对数据进行增删改查的操作方法》本文介绍了在MySQL环境下对数据进行增删改查的基本操作,包括插入数据、修改数据、删除数据、数据查询(基本查询、连接查询、聚合函数查询、子查询)等,并... 目录一、插入数据:二、修改数据:三、删除数据:1、delete from 表名;2、truncate

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep