【在路上3】大数据离线分析快递的派件时效

2023-11-06 08:18

本文主要是介绍【在路上3】大数据离线分析快递的派件时效,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【在路上1】快递物流大数据的由来

【在路上2】快递的运单轨迹

几乎人人都用过快递,如果说用户最在意什么?那必然是谁家送得快!这也是整个快递物流行业被诟病最多的地方。

都知道顺丰送得快,但价格摆在那里,且它的市场份额不到十分之一。也有许多热心用户质疑,广州到上海开车就18个小时不到,快递怎么样都不可能要四五天(2016年以前),收货1天,运输1天,分拣派件1天,标准时长应该是3天才对,今发后至!这个分析很中肯,同时也是我们自己的疑问,只是无从查起!

很多人都干过一件事,网购以后,每天刷新多次物流轨迹,看看宝贝到哪了。如果上午就到了上海,而下午没有拿到手,大多数人都会发火!

2016年,有了初步的大数据(此时没有任何积累),在高层领导决策下,我们选择了末端派件这么一个环节来进行时效分析。

针对过去一个月进入上海的全部包裹进行数据分析,看看每个网点派件时长,横向对比其它网点,纵向对比该网点不同日期。

咱们用专业术语再来一次:

1,准备20160301至20160407全量签收数据,签收表独立,入库时间作为索引,考虑上传延迟多跑几天。

2,过滤签收网点位于上海,且签收时间位于3月份的数据。签收后可能过1~48小时才会上传入库,所以签收时间不等于入库时间。

3,按照中心发出日期加网点的维度,统计每个网点每天应派件量(中心发出),实际派件量(网点签收),平均时效(签收时间减去中心发出时间)

4,根据坐标计算网点到中心的驾驶时长,留出2小时作为回去后的分拣操作时间,就得到网点实际应该达到的派件时效

所有进入上海的件,在上海中心交给派件网点之前,都会做一次发件扫描,最终派件网点会做签收扫描。

按照这个逻辑,借助Oracle一体机的存储过程跑了一份数据。此时上海全天派件量10万票左右,整个3月份两三百万,跑起来难度不大。

很显然,这份数据根本就没法看!这是纯技术思维考虑的方案,尽管考虑到多跑一段,但是快递业务根本就不是这样的!!!

整个3月份的总量是差不多的,平均时效也偏差不大,问题就在于统计日期,完全错了!

要知道,每天14:30以后到达上海的件,会留到第二天早上6点,作为一派件由网点车拉回去,6:00到12:30作为二派,12:30到14:30作为三派,网点一共会来拉三次件。这里问题最大的就在于一派前半截,下午才到,网点即使拉回去也派不掉,傍晚还得去收件分拣打包。

因此,重新调整了统计日期计算规则,才得到了一份初步数据,以派件任务的视角来查看。这说明,光有技术不行,还得深入到业务之中去。

然而事情并不会那么顺利。拿这份数据去跟网点沟通的时候,才发现自己是多么的幼稚!前面说到,网点会派三次车去中心拉件,这是理想情况。实际上部分网点不会这么操作,比如,几个网点共用一辆车,又比如,二派的车在12:30故意不走,等到13:30,顺带拉走大部分三派的件,等等等!这都是为了节省成本啊,每个人都可以找出成千上万个理由,为派件不及时而辩解,实际上有没有派件不力,就掩盖在其中!

项目就此进入僵局!欲听如何破局,请听下回分解!

这一节进入实战,遇到了许多实实在在的意想不到的问题:

1,采集数据延迟上传,导致业余时间远小于入库时间。而为了能够单向分析以及数据准确性,就得用入库时间作为索引,在目标数据区间前后多跑一段数据。

2,结合快递业务,绝大部分包裹的生命周期在7天以内,因为多跑7天数据。

3,快递有一二三派,不同城市要求不同

---以上所述并非完全真实准确,为了便于书写,把不同时间点发生的事情略微调整。

作者认为,最有价值的应该是大数据落地这么一个过程,如果借助技术去攻城拔寨!

今天除夕,躲在山沟沟里用手机码字实属不易,如果喜欢,帮忙转发一下!

提前祝大家新年快乐!

这篇关于【在路上3】大数据离线分析快递的派件时效的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/355489

相关文章

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2