SENet详解-最后一届ImageNet冠军模型

2023-11-06 02:20

本文主要是介绍SENet详解-最后一届ImageNet冠军模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

声明:文章仅作知识整理、分享,如有侵权请联系作者删除博文,谢谢!

经典分类网络(传送门):目录索引、LeNet、AlexNet、VGG、ResNet、Inception、DenseNet、SeNet。

SENet最后一届 ImageNet 2017 竞赛 Image Classification 任务的冠军,也是目前细粒度分类任务的必选基础网络。CNN是通过用局部感受野,基于逐通道基础上,去融合空间信息来提取信息化的特征,对于图像这种数据来说很成功。

为了增强CNN模型的表征能力,许多现有的工作主要用在增强空间编码上,比如ResNet,DenseNet。SENet则主要关注通道上可做点,通过显示的对卷积层特征之间的通道相关性进行建模来提升模型的表征能力;并以此提出了特征重校准机制:通过使用全局信息去选择性的增强可信息化的特征并同时压缩那些无用的特征。

SE 模块可以嵌入到现在几乎所有的网络结构中。通过在原始网络结构的 building block 单元中嵌入 SE 模块,我们可以获得不同种类的 SENet。如 SE-BN-Inception、SE-ResNet、SE-ReNeXt、SE-Inception-ResNet-v2 等等。

1、关于卷积的进一步讨论

近些年来,卷积神经网络在很多领域上都取得了巨大的突破。而卷积核作为卷积神经网络的核心,通常被看做是在局部感受野上,将空间上(spatial)的信息和特征维度上(channel-wise)的信息进行聚合的信息聚合体。卷积神经网络由一系列卷积层、非线性层和下采样层构成,这样它们能够从全局感受野上去捕获图像的特征来进行图像的描述。

然而去学到一个性能非常强劲的网络是相当困难的,其难点来自于很多方面。最近很多工作被提出来从空间维度层面来提升网络的性能,如 Inception 结构中嵌入了多尺度信息,聚合多种不同感受野上的特征来获得性能增益;在 Inside-Outside 网络中考虑了空间中的上下文信息;还有将 Attention 机制引入到空间维度上,等等。这些工作都获得了相当不错的成果。

2、Se模块构建

SE网络就是通过不断的堆叠这个SE模块而成的网络。

假设张量X∈RW′×H′×C′,卷积操作为Ftr,从而得到新的张量U∈RW×H×C。到这里都是传统的卷积过程而已,然后基于U,接下来开始挤压和激励:

挤压(squeeze):将U固定通道维度不变,对每个feature map进行处理,从而得到一个基于通道的描述符1×1×C,即用一个标量来描述一个map;

作者提出的所谓挤压就是针对每个通道的feature map,进行一次GAP(全局平均池化):

即将这个feature map表示的矩阵所有值相加,求其平均值。

激励(Excitation):将挤压得到的通道描述符1×1×C作为每个通道的权重,基于U重新生成一个X˜。

先对挤压后得到的1×1×C的向量基础上先进行一次FC层转换,然后用ReLU激活函数层,然后在FC层转换,接着采用sigmoid激活函数层,该层就是为了模仿LSTM中门的概念,通过这个来控制信息的流通量:

其中,δ是ReLU函数,W1∈RCr×C,W2∈RC×Cr,为了限制模型的复杂程度并且增加泛化性,就通过两层FC层围绕一个非线性映射来形成一个"瓶颈",其中r作者选了16,最后在得到了所谓的门之后,只要简单的将每个通道的门去乘以原来对应的每个feature map,就能控制每个feature map的信息流通量了:

从上述描述就可以看出,这其实算是一个构建网络块的方法,可以应用到inception和resnet等网络上,从而具有普适性:

整理下来,一个SE模块分为三个部分:

给定一个输入 x,其特征通道数为 c_1,通过一系列卷积希望变换后得到一个特征通道数为 c_2 的特征。即输入通道是c1,输出通道是c2。通过三个操作来重标定前面得到的特征:

1)Squeeze 操作,我们顺着空间维度来进行特征压缩,将每个二维的特征通道变成一个实数,这个实数某种程度上具有全局的感受野,并且输出的维度和输入的特征通道数相匹配。它表征着在特征通道上响应的全局分布,而且使得靠近输入的层也可以获得全局的感受野,这一点在很多任务中都是非常有用的。

2) Excitation 操作,它是一个类似于循环神经网络中门的机制。通过参数 w 来为每个特征通道生成权重,其中参数 w 被学习用来显式地建模特征通道间的相关性。

3)一个 Reweight 的操作,我们将 Excitation 的输出的权重看做是进过特征选择后的每个特征通道的重要性,然后通过乘法逐通道加权到先前的特征上,完成在通道维度上的对原始特征的重标定。

3、keras实现

输入为待处理feature maps,特征通道为c1,输出特征通道为c2,se相当于实现一个Dense(filter)功能。属于Dense的加强版。ratio为通道缩放的比例。squeeze_excite_block函数实现了左边c2到右边c2的映射。

def squeeze_excite_block(input, ratio=16):# 1、构造se_shapechannel_axis = 1 if K.image_data_format() == "channels_first" else -1filters = input._keras_shape[channel_axis] # 取输入的通道数c1se_shape = (1, 1, filters)  # 2、Squeeze 操作,全局池化,reshape,变为一个序列se = GlobalAveragePooling2D()(input)se = Reshape(se_shape)(se)、# 3、Excitation 操作,先压缩通道数,再返回原维度se = Dense(int(filters / float(ratio)), activation='relu', kernel_initializer='he_normal', use_bias=False)(se)se = Dense(filters, activation='sigmoid', kernel_initializer='he_normal', use_bias=False)(se) # sigmoid激活# 4、Reweight 的操作,将权重乘到输入上if K.image_data_format() == 'channels_first':se = Permute((3, 1, 2))(se)x = multiply([input, se])return x

具体调用方式:

上一篇:DenseNet,传送门:分类网络目录索引。

这篇关于SENet详解-最后一届ImageNet冠军模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/353931

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)