求极限Lim x->0 (x-sinx)*e-²x / (1-x)⅓

2023-11-05 20:04
文章标签 极限 lim sinx

本文主要是介绍求极限Lim x->0 (x-sinx)*e-²x / (1-x)⅓,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目如下:

解题思路:

这题运用了无穷小替换、洛必达法则、求导法则

具体解题思路如下:

1、首先带入x趋近于0,可以得到(0*1)/0,所以可以把e的-x的平方沈略掉

然后根据无穷小替换,利用t趋近于0时,(1+t)的n分之一次方 趋近于t/n

此题中替换 (1+(-x的3次方))的二分之一次方,变成-x的平方/2

3、然后洛必达法则,“0/0型” 分子分母同事求导,极限值不变

这篇关于求极限Lim x->0 (x-sinx)*e-²x / (1-x)⅓的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/352175

相关文章

【matlab 求极限】limit函数求极限

syms x;y1=(4*x^3-2*x^2+x)/(3*x^2+2*x);limit(y1,x,0) >> syms x;y1=(4*x^3-2*x^2+x)/(3*x^2+2*x);limit(y1,x,0)ans =1/2>>

量化交易面试:什么是中心极限定理?

中心极限定理(Central Limit Theorem, CLT)是概率论和统计学中的一个重要定理,它描述了在一定条件下,独立随机变量的和的分布趋向于正态分布的性质。这个定理在量化交易和金融分析中具有重要的应用价值。以下是对中心极限定理的详细解释: 基本概念: 中心极限定理指出,当我们从一个具有任意分布的总体中抽取足够大的样本时,样本均值的分布将近似于正态分布,无论原始总体的分布是什么样的。

《挑战极限,畅享精彩 ——韩星地带:逃脱任务 3 震撼来袭》

在综艺的浩瀚星海中,总有那么一些节目如璀璨星辰般闪耀,而《韩星地带:逃脱任务 3》无疑就是其中的佼佼者。 2024 年,这个令人热血沸腾的真人秀节目再度回归,为观众带来一场惊心动魄的冒险之旅。节目由韩国 “国民 MC” 刘在石领衔主持,他那无与伦比的综艺感和控场能力,如同定海神针般,稳稳地把控着节目的节奏。权俞利,少女时代的魅力成员,勇敢与智慧并存,在节目中展现出令人惊叹的一面。新加入的金东炫

分类预测|基于蜣螂优化极限梯度提升决策树的数据分类预测Matlab程序DBO-Xgboost 多特征输入单输出 含基础模型

分类预测|基于蜣螂优化极限梯度提升决策树的数据分类预测Matlab程序DBO-Xgboost 多特征输入单输出 含基础模型 文章目录 一、基本原理1. 数据准备2. XGBoost模型建立3. DBO优化XGBoost参数4. 模型训练5. 模型评估6. 结果分析与应用原理总结 二、实验结果三、核心代码四、代码获取五、总结 分类预测|基于蜣螂优化极限梯度提升决策树的数据分类

分类预测|基于麻雀优化正则化极限学习机的数据分类预测Matlab程序SSA-RELM 多特征输入多类别输出

分类预测|基于麻雀优化正则化极限学习机的数据分类预测Matlab程序SSA-RELM 多特征输入多类别输出 文章目录 一、基本原理1. 数据准备2. RELM模型建立3. SSA优化RELM参数4. 模型训练5. 模型评估6. 结果分析与应用原理总结 二、实验结果三、核心代码四、代码获取五、总结 分类预测|基于麻雀优化正则化极限学习机的数据分类预测Matlab程序SSA-R

为什么在很多应用中常采用正态分布/高斯分布、中心极限定理

为什么在很多应用中常采用正态分布/高斯分布? 当我们由于缺乏关于某个实数上分布的先验知识而不知道该选择怎么样的形式时,正态分布是默认的比较好的选择,有两个原因: 一,我们想要建模的很多分布的真实情况是比较接近正态分布的。 中心极限定理说明很多独立随机变量的和近似服从正态分布。 二,在具有相同方差的所有可能的概率分布中,正态分布在实数上具有最大的不确定性。 因此,我们可以认为正态分布是对模型加入的

【高等数学】【综合习题】第一章:函数、极限与函数连续性

文章目录 一. 选择二. 填空题1. 泰勒公式2. 积分与极限 三. 大题 一. 选择 x p {x^p} xp 放到一起求极限   正常思路求解:求积分即可。   带入求导:题型不具备典型性。   直接按照求导公式   有界性arctanx的函数图像。   函数图像与极限的结合 取特殊值 夹逼

基于BP神经网络的极限载荷预测,BP神经网络详细原理,BP神经网络训练窗口详解

目录 摘要 BP神经网络参数设置及各种函数选择 参数设置 训练函数 传递函数 学习函数 性能函数 显示函数 前向网络创建函数 BP神经网络训练窗口详解 训练窗口例样 训练窗口四部详解 基于BP神经网络的极限载荷预测 效果图 结果分析 摘要 本文总结BP神经网络的参数设置,训练函数,传递函数,学习函数,画图函数,性能函数,创建函数,详解nntraintool训练窗口,基于BP神经网络的极限载荷

回归预测|基于粒子群优化核极限学习机PSO-KELM结合Adaboost集成的数据预测Matlab程序 多特征输入单输出

回归预测|基于粒子群优化核极限学习机PSO-KELM结合Adaboost集成的数据预测Matlab程序 多特征输入单输出 文章目录 一、基本原理1. 数据预处理2. PSO优化(粒子群优化)3. KELM训练(核极限学习机)4. AdaBoost集成5. 模型评估和优化6. 预测总结 二、实验结果三、核心代码四、代码获取五、总结 回归预测|基于粒子群优化核极限学习机PSO-

极限的性质【下】《用Manim可视化》

通过前面的极限的定义,现在是计算极限的时候了。然而,在此之前,我们需要一些极限的性质,这将使我们的工作变得简单一些。我们先来看看这些。 接下来的例子中 极限的性质: 6.幂函数的极限  在这个性质n中可以是任何实数(正数、负数、整数、分数、无理数、零等)。 例如,考虑的情况n=2。 对于任意整数n都可以这样做。 接下来我们实现一下该性质: 示例代码: from manim