在华为ModelArts运行YOLOV3_coco_detection_dynamic_AIPP样例

2023-11-05 16:50

本文主要是介绍在华为ModelArts运行YOLOV3_coco_detection_dynamic_AIPP样例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、参考资料

YOLOV3_coco_detection_dynamic_AIPP样例

ATC_yolov3_caffe_AE

在Atlas 200DK上体验DVPP(2)DVPP、AIPP和OM推理

二、关键步骤

2.1 下载源代码

官方:samples
博主:samples

2.2 下载预训练模型

wget https://modelzoo-train-atc.obs.cn-north-4.myhuaweicloud.com/003_Atc_Models/AE/ATC%20Model/Yolov3/yolov3.caffemodelwget https://modelzoo-train-atc.obs.cn-north-4.myhuaweicloud.com/003_Atc_Models/AE/ATC%20Model/Yolov3/yolov3.prototxt

项目目录

samples/cplusplus/level2_simple_inference/2_object_detection/YOLOV3_coco_detection_dynamic_AIPP

2.3 下载AIPP配置文件

wget https://c7xcode.obs.cn-north-4.myhuaweicloud.com/models/YOLOV3_coco_detection_dynamic_AIPP/aipp_objectdetection.cfg

aipp_objectdetection.cfg文件

aipp_op { 
aipp_mode : dynamic
related_input_rank : 0
max_src_image_size: 700000
support_rotation: false
}

2.4 设置环境变量

source ~/Ascend/ascend-toolkit/set_env.shexport INSTALL_DIR=/home/ma-user/Ascend/ascend-toolkit/latest/arm64-linuxexport THIRDPART_PATH=/home/ma-user/work/samplesexport CPU_ARCH=aarch64

2.5 atc模型转换

[ma-user@notebook-87136e07-6a9a-4138-beec-742972f7b62f model]$ atc --model=./yolov3.prototxt --weight=./yolov3.caffemodel --framework=0 --output=./yolov3 --soc_version=Ascend910 --insert_op_conf=./aipp_objectdetection.cfg
ATC start working now, please wait for a moment.
ATC run success, welcome to the next use.

2.6 修改CMakeLists.txt

添加opencv静态链接库,cmake build编译可链接到opencv。

# OpenCV_DIR目录包含OpenCVConfig.cmake
set(OpenCV_DIR /home/ma-user/work/opencv-4.5.1/lib/cmake/opencv4)
# 找到opencv库
find_package(OpenCV REQUIRED)# If the package has been found, several variables will
# be set, you can find the full list with descriptions
# in the OpenCVConfig.cmake file.
# Print some message showing some of them
if(${OPENCV_FOUND})message(STATUS "OpenCV version: ${OpenCV_VERSION}")message(STATUS "OpenCV include path: ${OpenCV_INCLUDE_DIRS}")message(STATUS "OpenCV libraries: ${OpenCV_LIBS}")
endif()# Add OpenCV headers location to your include paths
include_directories(${OpenCV_INCLUDE_DIRS})

2.7 sample_build.sh

[ma-user@notebook-87136e07-6a9a-4138-beec-742972f7b62f scripts]$ ./sample_build.sh
ScriptPath: /home/ma-user/work/samples/cplusplus/level2_simple_inference/2_object_detection/YOLOV3_coco_detection_dynamic_AIPP/scripts
ModelPath: /home/ma-user/work/samples/cplusplus/level2_simple_inference/2_object_detection/YOLOV3_coco_detection_dynamic_AIPP/scripts/../model
[INFO] Sample preparation
please input TargetKernel? [arm/x86]:arm
[INFO] input is normal, start preparation.
--2022-07-05 18:00:01--  https://c7xcode.obs.cn-north-4.myhuaweicloud.com/models/YOLOV3_coco_detection_dynamic_AIPP/dog1_1024_683.jpg
Resolving proxy-notebook.modelarts.com (proxy-notebook.modelarts.com)... 192.168.0.62
Connecting to proxy-notebook.modelarts.com (proxy-notebook.modelarts.com)|192.168.0.62|:8083... connected.
Proxy request sent, awaiting response... 200 OK
Length: 35635 (35K) [image/jpeg]
Saving to: '/home/ma-user/work/samples/cplusplus/level2_simple_inference/2_object_detection/YOLOV3_coco_detection_dynamic_AIPP/scripts/../model/../data/dog1_1024_683.jpg'/home/ma-user/work/samples/cplusp 100%[============================================================>]  34.80K  --.-KB/s    in 0.02s2022-07-05 18:00:02 (1.61 MB/s) - '/home/ma-user/work/samples/cplusplus/level2_simple_inference/2_object_detection/YOLOV3_coco_detection_dynamic_AIPP/scripts/../model/../data/dog1_1024_683.jpg' saved [35635/35635][INFO] The yolov3.om already exists.start buiding
-- The C compiler identification is GNU 7.3.0
-- The CXX compiler identification is GNU 7.3.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/g++
-- Check for working CXX compiler: /usr/bin/g++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Found OpenCV: /home/ma-user/work/opencv-4.5.1 (found version "4.5.2")
-- OpenCV version: 4.5.2
-- OpenCV include path: /home/ma-user/work/opencv-4.5.1/include/opencv4
-- OpenCV libraries: opencv_calib3d;opencv_core;opencv_dnn;opencv_features2d;opencv_flann;opencv_gapi;opencv_highgui;opencv_imgcodecs;opencv_imgproc;opencv_ml;opencv_objdetect;opencv_photo;opencv_stitching;opencv_video;opencv_videoio
arm architecture detected
target aarch64 300
-- Configuring done
-- Generating done
-- Build files have been written to: /home/ma-user/work/samples/cplusplus/level2_simple_inference/2_object_detection/YOLOV3_coco_detection_dynamic_AIPP/build/intermediates/host
Scanning dependencies of target main
[ 12%] Building CXX object CMakeFiles/main.dir/utils.cpp.o
[ 25%] Building CXX object CMakeFiles/main.dir/model_process.cpp.o
[ 37%] Building CXX object CMakeFiles/main.dir/object_detect.cpp.o
/home/ma-user/work/samples/cplusplus/level2_simple_inference/2_object_detection/YOLOV3_coco_detection_dynamic_AIPP/src/object_detect.cpp: In member function 'void* ObjectDetect::GetInferenceOutputItem(uint32_t&, aclmdlDataset*, uint32_t)':
/home/ma-user/work/samples/cplusplus/level2_simple_inference/2_object_detection/YOLOV3_coco_detection_dynamic_AIPP/src/object_detect.cpp:431:56: warning: 'uint32_t aclGetDataBufferSize(const aclDataBuffer*)' is deprecated: aclGetDataBufferSize is deprecated, use aclGetDataBufferSizeV2 instead [-Wdeprecated-declarations]size_t bufferSize = aclGetDataBufferSize(dataBuffer);^
In file included from /home/ma-user/Ascend/ascend-toolkit/latest/arm64-linux/acllib/include/acl/acl_rt.h:16:0,from /home/ma-user/Ascend/ascend-toolkit/latest/arm64-linux/acllib/include/acl/acl.h:14,from /home/ma-user/work/samples/cplusplus/level2_simple_inference/2_object_detection/YOLOV3_coco_detection_dynamic_AIPP/src/../inc/utils.h:24,from /home/ma-user/work/samples/cplusplus/level2_simple_inference/2_object_detection/YOLOV3_coco_detection_dynamic_AIPP/src/../inc/object_detect.h:20,from /home/ma-user/work/samples/cplusplus/level2_simple_inference/2_object_detection/YOLOV3_coco_detection_dynamic_AIPP/src/object_detect.cpp:19:
/home/ma-user/Ascend/ascend-toolkit/latest/arm64-linux/acllib/include/acl/acl_base.h:276:30: note: declared hereACL_FUNC_VISIBILITY uint32_t aclGetDataBufferSize(const aclDataBuffer *dataBuffer);^~~~~~~~~~~~~~~~~~~~
[ 50%] Building CXX object CMakeFiles/main.dir/dvpp_process.cpp.o
[ 62%] Building CXX object CMakeFiles/main.dir/dvpp_resize.cpp.o
[ 75%] Building CXX object CMakeFiles/main.dir/dvpp_jpegd.cpp.o
[ 87%] Building CXX object CMakeFiles/main.dir/main.cpp.o
[100%] Linking CXX executable /home/ma-user/work/samples/cplusplus/level2_simple_inference/2_object_detection/YOLOV3_coco_detection_dynamic_AIPP/out/main
[100%] Built target main
[INFO] Sample preparation is complete

在这里插入图片描述

2.8 sample_run.sh

[ma-user@notebook-87136e07-6a9a-4138-beec-742972f7b62f scripts]$ ./sample_run.sh
[INFO] The sample starts to run
[INFO]  acl init success
[INFO]  open device 0 success
[INFO]  create context success
[INFO]  create stream success
[INFO]  load model ../model/yolov3.om success
[INFO]  create model description success
[INFO]  create model output success
[INFO]  dvpp init resource ok
[INFO]  convert image success
[WARN]  Input size verify failed input[0] size: 700000, provide size : 259584
[INFO]  model execute success
110 116 929 600 dog99%
[INFO]  Process pic ../data/dog1_1024_683.jpg by dvpp success
[WARN]  Input size verify failed input[0] size: 700000, provide size : 519168
[INFO]  model execute success
120 118 925 596 dog99%
[INFO]  Process pic ../data/dog1_1024_683.jpg by OpenCV success
[INFO]  Execute sample success
[INFO]  unload model success, modelId is 1
[INFO]  end to destroy stream
[INFO]  end to destroy context
[INFO]  end to reset device is 0
[INFO]  end to finalize acl
[INFO] The program runs successfully, please view the result file in the /home/ma-user/work/samples/cplusplus/level2_simple_inference/2_object_detection/YOLOV3_coco_detection_dynamic_AIPP/scripts/../out/output directory!

在这里插入图片描述

2.9 效果图

在这里插入图片描述
在这里插入图片描述

这篇关于在华为ModelArts运行YOLOV3_coco_detection_dynamic_AIPP样例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/351199

相关文章

IDEA运行spring项目时,控制台未出现的解决方案

《IDEA运行spring项目时,控制台未出现的解决方案》文章总结了在使用IDEA运行代码时,控制台未出现的问题和解决方案,问题可能是由于点击图标或重启IDEA后控制台仍未显示,解决方案提供了解决方法... 目录问题分析解决方案总结问题js使用IDEA,点击运行按钮,运行结束,但控制台未出现http://

解决Spring运行时报错:Consider defining a bean of type ‘xxx.xxx.xxx.Xxx‘ in your configuration

《解决Spring运行时报错:Considerdefiningabeanoftype‘xxx.xxx.xxx.Xxx‘inyourconfiguration》该文章主要讲述了在使用S... 目录问题分析解决方案总结问题Description:Parameter 0 of constructor in x

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时

Linux使用nohup命令在后台运行脚本

《Linux使用nohup命令在后台运行脚本》在Linux或类Unix系统中,后台运行脚本是一项非常实用的技能,尤其适用于需要长时间运行的任务或服务,本文我们来看看如何使用nohup命令在后台... 目录nohup 命令简介基本用法输出重定向& 符号的作用后台进程的特点注意事项实际应用场景长时间运行的任务服

如何在一台服务器上使用docker运行kafka集群

《如何在一台服务器上使用docker运行kafka集群》文章详细介绍了如何在一台服务器上使用Docker运行Kafka集群,包括拉取镜像、创建网络、启动Kafka容器、检查运行状态、编写启动和关闭脚本... 目录1.拉取镜像2.创建集群之间通信的网络3.将zookeeper加入到网络中4.启动kafka集群

你的华为手机升级了吗? 鸿蒙NEXT多连推5.0.123版本变化颇多

《你的华为手机升级了吗?鸿蒙NEXT多连推5.0.123版本变化颇多》现在的手机系统更新可不仅仅是修修补补那么简单了,华为手机的鸿蒙系统最近可是动作频频,给用户们带来了不少惊喜... 为了让用户的使用体验变得很好,华为手机不仅发布了一系列给力的新机,还在操作系统方面进行了疯狂的发力。尤其是近期,不仅鸿蒙O

C# dynamic类型使用详解

《C#dynamic类型使用详解》C#中的dynamic类型允许在运行时确定对象的类型和成员,跳过编译时类型检查,适用于处理未知类型的对象或与动态语言互操作,dynamic支持动态成员解析、添加和删... 目录简介dynamic 的定义dynamic 的使用动态类型赋值访问成员动态方法调用dynamic 的

PostgreSQL如何用psql运行SQL文件

《PostgreSQL如何用psql运行SQL文件》文章介绍了两种运行预写好的SQL文件的方式:首先连接数据库后执行,或者直接通过psql命令执行,需要注意的是,文件路径在Linux系统中应使用斜杠/... 目录PostgreSQ编程L用psql运行SQL文件方式一方式二总结PostgreSQL用psql运

如何用Docker运行Django项目

本章教程,介绍如何用Docker创建一个Django,并运行能够访问。 一、拉取镜像 这里我们使用python3.11版本的docker镜像 docker pull python:3.11 二、运行容器 这里我们将容器内部的8080端口,映射到宿主机的80端口上。 docker run -itd --name python311 -p

跨系统环境下LabVIEW程序稳定运行

在LabVIEW开发中,不同电脑的配置和操作系统(如Win11与Win7)可能对程序的稳定运行产生影响。为了确保程序在不同平台上都能正常且稳定运行,需要从兼容性、驱动、以及性能优化等多个方面入手。本文将详细介绍如何在不同系统环境下,使LabVIEW开发的程序保持稳定运行的有效策略。 LabVIEW版本兼容性 LabVIEW各版本对不同操作系统的支持存在差异。因此,在开发程序时,尽量使用