天池大赛——二手车交易价格预测方案分享——神经网络

本文主要是介绍天池大赛——二手车交易价格预测方案分享——神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       这个比赛是天池的一个数据挖掘入门赛,要求根据提供的数据预测二手车的交易价格,属于回归问题,此篇主要分享一下模型方面的设计思路。
       推荐系统最常用的模型是LightGBM和XGBoost等,但在这个比赛中两个模型的表现一般,也可能是我自己没有调好的原因。最终没有选择这两个模型,而是采用了神经网络,并基于pytorch实现。

网络结构

普通的全连接网络在层数比较深的时候会由于梯度衰减的问题难以训练,因此在设计网络结构的时候参考了Resnet的跳层连接思想,即在网络中设计了名为Basicblock的基本模块。

class BasicBlock(nn.Module):def __init__(self, input_size, hidden_size):super(BasicBlock, self).__init__()self.input_size = input_sizeself.hidden_size = hidden_sizeself.layer1 = nn.Sequential(nn.Linear(self.input_size, self.hidden_size),nn.BatchNorm1d(self.hidden_size),nn.ReLU())self.layer2 = nn.Sequential(nn.Linear(self.hidden_size, self.hidden_size),nn.BatchNorm1d(self.hidden_size),nn.ReLU())self.layer3 = nn.Sequential(nn.Linear(self.hidden_size, self.hidden_size),nn.BatchNorm1d(self.hidden_size),nn.ReLU())                            self.layer4 = nn.Sequential(nn.Linear(self.hidden_size, self.input_size),nn.BatchNorm1d(self.input_size))self.relu = nn.ReLU()def forward(self, x):out = self.layer1(x)out = self.layer2(out)out = self.layer3(out)out = self.layer4(out)out = out + xout = self.relu(out)return out

       另外为了提高网络的拟合能力,参考SeNet的注意力思想,设计了注意力模块:

nn.Sequential(nn.Linear(self.layer_size, self.layer_size//16),nn.ReLU(),nn.Linear(self.layer_size//16, self.layer_size),nn.Sigmoid())

       网络整体结构如下所示:
在这里插入图片描述
       网络结构中的input_block和output_block如下:

self.inputblock = nn.Sequential(nn.Linear(input_size, self.layer_size),nn.BatchNorm1d(self.layer_size),nn.ReLU())
self.outputblock = nn.Linear(self.layer_size, 1)

模型的训练

       在训练时采用了10折交叉验证,生成十个模型,然后对十个模型在测试集上的预测结果进行平均得到最终预测结果。
       优化器采用的是Adam,初始学习率设置为1e-1,学习率衰减采用的是ReduceLROnPlateau:

scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', patience=5, verbose=True, cooldown=1, factor=0.7, min_lr=1e-5)

       batch_size设置为2048,训练150轮。

模型性能

       上述结构的模型,在验证集上的mae基本上能够到420+,不过这时的训练集mae比验证集的略高。在调试过程中发现略微的欠拟合能够实现更低的val_loss。
       经过十个模型融合后的预测结果,提交到网站上以后,基本能够达到410+的结果。最终提交的结果,是我通过调整模型结构(如增加深度,增加宽度)之后得到的5个预测结果的平均,最终排行榜上结果是408,排行第15。

这篇关于天池大赛——二手车交易价格预测方案分享——神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/350781

相关文章

Python + Streamlit项目部署方案超详细教程(非Docker版)

《Python+Streamlit项目部署方案超详细教程(非Docker版)》Streamlit是一款强大的Python框架,专为机器学习及数据可视化打造,:本文主要介绍Python+St... 目录一、针对 Alibaba Cloud linux/Centos 系统的完整部署方案1. 服务器基础配置(阿里

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

使用MyBatis TypeHandler实现数据加密与解密的具体方案

《使用MyBatisTypeHandler实现数据加密与解密的具体方案》在我们日常的开发工作中,经常会遇到一些敏感数据需要存储,比如用户的手机号、身份证号、银行卡号等,为了保障数据安全,我们通常会对... 目录1. 核心概念:什么是 TypeHandler?2. 实战场景3. 代码实现步骤步骤 1:定义 E

Python实现繁体转简体功能的三种方案

《Python实现繁体转简体功能的三种方案》在中文信息处理中,繁体字与简体字的转换是一个常见需求,无论是处理港澳台地区的文本数据,还是开发面向不同中文用户群体的应用,繁简转换都是不可或缺的功能,本文将... 目录前言为什么需要繁简转换?python实现方案方案一:使用opencc库方案二:使用zhconv库

MyBatis Plus中执行原生SQL语句方法常见方案

《MyBatisPlus中执行原生SQL语句方法常见方案》MyBatisPlus提供了多种执行原生SQL语句的方法,包括使用SqlRunner工具类、@Select注解和XML映射文件,每种方法都有... 目录 如何使用这些方法1. 使用 SqlRunner 工具类2. 使用 @Select 注解3. 使用

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺