【backward解决方案与原理】网络模型在梯度更新时出现变量版本号机制错误

本文主要是介绍【backward解决方案与原理】网络模型在梯度更新时出现变量版本号机制错误,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【backward解决方案与原理】网络模型在梯度更新时出现变量版本号机制错误

  • 报错详情
  • 错误产生背景
  • 原理
  • 解决方案

RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation

报错详情

  模型在backward时,发现如下报错:
请添加图片描述
  即RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation

  其大概意思是说,当在计算梯度时,某个变量已经被操作修改了,这会导致随后的计算梯度的过程中该变量的值发生变化,从而导致计算梯度出现问题。

错误产生背景

  起因是我要复现一种层级多标签分类的网络结构:
在这里插入图片描述
  当输入序列 x x x经过一次BERT模型之后,得到当前预测的一级标签,然后拼接到输入序列 x x x上,再次输入到BERT模型里以预测二级标签。

  出错版本的模型结构如下:

def forward(self, x, label_A_emb):context = x[0]  # 输入的句子mask = x[2]  d1 = self.bert(context, attention_mask=mask)logit1 = self.fc1(d1[1])  # [batch_size, label_A_num] = [128, 34]idx = torch.max(logit1.data, 1)[1] # [batch_size] = [128]extra = label_A_emb[idx]context[:, -3:] = extramask[:, -3:] = 1d2 = self.bert(context, attention_mask=mask)logit2 = self.fc2(d2[1])  # [batch_size, label_B_num] = [128, 34]return logit1, logit2

  在计算梯度时,由于contextmask的值被中间修改过一次,所以会报错。

原理

请添加图片描述
  图中 w 1 w_1 w1的梯度计算如上图,损失函数为 E t o t a l E_{total} Etotal,最终 w 1 w_1 w1的梯度里是需要用到原始输入 i 1 i_1 i1的。

  所以在上面贴的模型结构代码中,输入在经过神经网络之后,又作了一次改动,然后再经过神经网络。但是梯度计算会计算两次的梯度,可是发现输入只有改动后的值了,改动前的值已经被覆盖。

计算梯度时的版本号机制是PyTorch中用于跟踪张量操作历史的一种机制。它允许PyTorch在需要计算梯度时有效地管理和跟踪相关的操作,以便进行自动微分。每个张量都有一个版本号,记录了该张量的操作历史。当对一个张量执行就地操作(inplace operation)时,例如修改张量的值或重新排列元素的顺序,版本号会增加。这种就地操作可能导致计算梯度时出现问题,因为梯度计算依赖于操作历史。

解决方案

  把即将改动的变量深拷贝一份,最终优化的代码如下:

def forward(self, x, label_A_emb):context = x[0]  # 输入的句子mask = x[2]  d1 = self.bert(context, attention_mask=mask)logit1 = self.fc1(d1[1])  # [batch_size, label_A_num] = [128, 34]idx = torch.max(logit1.data, 1)[1] # [batch_size] = [128]extra = label_A_emb[idx]context_B = copy.deepcopy(context)mask_B = copy.deepcopy(mask)context_B[:, -3:] = extramask_B[:, -3:] = 1d2 = self.bert_A(context_B, attention_mask=mask_B)logit2 = self.fc2(d2[1])  # [batch_size, label_B_num] = [128, 34]return logit1, logit2

这篇关于【backward解决方案与原理】网络模型在梯度更新时出现变量版本号机制错误的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/349914

相关文章

Spring Security常见问题及解决方案

《SpringSecurity常见问题及解决方案》SpringSecurity是Spring生态的安全框架,提供认证、授权及攻击防护,支持JWT、OAuth2集成,适用于保护Spring应用,需配置... 目录Spring Security 简介Spring Security 核心概念1. ​Securit

MySQL逻辑删除与唯一索引冲突解决方案

《MySQL逻辑删除与唯一索引冲突解决方案》本文探讨MySQL逻辑删除与唯一索引冲突问题,提出四种解决方案:复合索引+时间戳、修改唯一字段、历史表、业务层校验,推荐方案1和方案3,适用于不同场景,感兴... 目录问题背景问题复现解决方案解决方案1.复合唯一索引 + 时间戳删除字段解决方案2:删除后修改唯一字

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

Spring Boot中的路径变量示例详解

《SpringBoot中的路径变量示例详解》SpringBoot中PathVariable通过@PathVariable注解实现URL参数与方法参数绑定,支持多参数接收、类型转换、可选参数、默认值及... 目录一. 基本用法与参数映射1.路径定义2.参数绑定&nhttp://www.chinasem.cnbs

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

SpringBoot+Docker+Graylog 如何让错误自动报警

《SpringBoot+Docker+Graylog如何让错误自动报警》SpringBoot默认使用SLF4J与Logback,支持多日志级别和配置方式,可输出到控制台、文件及远程服务器,集成ELK... 目录01 Spring Boot 默认日志框架解析02 Spring Boot 日志级别详解03 Sp

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操