Nelder-Mead算法(智能优化之下山单纯形法)

2023-11-05 05:30

本文主要是介绍Nelder-Mead算法(智能优化之下山单纯形法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Nelder-Mead 算法是一种求多元函数局部最小值的算法,其优点是不需要函数可导并能较快收敛到局部最小值。

该算法需要提供函数自变量空间中的一个初始点x1,算法从该点出发寻找局部最小值

Nelder-Mead方法也称下山单纯形法,是由John Nelder & Roger Mead于1965年提出的一种求解数值优化问题的启发式搜索

给定n+1个顶点(i=1,2...,n+1),这些点对应的函数值为

开始按以下算法步骤进行,直到满足特定的精度条件或者循环次数时退出循环:


一、按照目标函数值对n+1个点进行从好到差排序,确定最坏点,第二最坏点和最好点

二、计算除去最差点外其他点的中心点

三、反射操作,计算反射点(就是最坏的点,C是第二步计算出的中心点,是反射系数,等于1)

  • 3.1若(意思是反射点的结果在最好点和第二差点之间)令(也 就是去掉了最坏点),并进入下一层循环。

  • 3.2若(意思是反射点的结果比最好的点还要好),计算拓展点

3.2.1若(意思是扩展点得到的结果比反射点要好),令,并进入下一 层循环

3.2.2否则(扩展失败的意思),进入下一层循环

  • 3.3若(意思是反射点的结果在最差点和第二差点之间且比最差点要 好)此时进行向外压缩操作,计算

3.3.1若(意思是向外压缩点比反射点结果要好),令(替换掉最 差点),并进入下一层循环

3.3.2否则执行最后一步

  • 3.4若(意思是反射点的结果比最差点还要糟糕),此时进行向内压缩操作,计算

3.4.1若,令,并进入下一层循环

3.4.2否则进入下一层循环

  • 3.5若上述四个条件都不符合,则令(i=2,...n+1),并且将赋值给并进入下一层循环

下面以二元函数为例,使用python编程

给定初始点:[0,0],[1.2,0],[0,0.8]

def func(x1, x2):return x1 * x1 - 4 * x1 + x2 * x2 - x2 - x1 * x2# 创建一个简单的二维数组
x = [[0, 0, 0], [1.2, 0, 0], [0, 0.8, 0]]
n = len(x)
m=0
for m in range(20):# 第一步,将这些点按照从小到大排序# 计算每个点对应的函数值for i in range(n):x[i][2] = func(x[i][0], x[i][1])# 按照目标函数值进行排序---从小到大排序for i in range(n - 1):for j in range(n - 1):if x[j][2] > x[j + 1][2]:temp = x[j]x[j] = x[j + 1]x[j + 1] = tempprint("第{}次循环得到的最优值为:".format(m),x[0])# 第二步,计算除去最坏点的其他点的中心点c = [0, 0, 0]  # 进行一个初始化c[0] = (x[0][0] + x[1][0]) / 2c[1] = (x[0][1] + x[1][1]) / 2c[2] = func(c[0], c[1])# 第三步进行反射操作,计算反射点xr = [0, 0, 0]xr[0] = 2 * c[0] - x[2][0]xr[1] = 2 * c[1] - x[2][1]xr[2] = func(xr[0], xr[1])if x[0][2] <= xr[2] < x[1][2]:x[2] = xrcontinueelif xr[2] < x[0][2]:xe = [0, 0, 0]xe[0] = 3 * c[0] - 2 * x[2][0]xe[1] = 3 * c[1] - 2 * x[2][1]xe[2] = func(xe[0], xe[1])if xe[2] < xr[2]:x[2] = xecontinueelse:x[2] = xrcontinueelif x[1][2] <= xr[2] < x[2][2]:c1 = [0, 0, 0]c1[0] = c[0] + (xr[0] - c[0]) / 2c1[1] = c[1] + (xr[1] - c[1]) / 2c1[2] = func(c1[0], c1[1])if c1[2] < xr[2]:x[2] = c1continueelse:passelif x[2][2] <= xr[2]:c2 = [0, 0, 0]c2[0] = c[0] + (x[2][0] - c[0])c2[1] = c[1] + (x[2][1] - c[1])c2[2]=func(c2[0],c2[1])if c2[2]<x[2][2]:x[2]=c2continueelse:passi=1for i in range(n):x[i][0]=x[0][0]+(x[i][0]-x[0][0])/2x[i][1] = x[0][1] + (x[i][1] - x[0][1]) / 2x[i][2]=func(x[i][0],x[i][1])continue

运行结果如下图所示:

这篇关于Nelder-Mead算法(智能优化之下山单纯形法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/347720

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time