Nelder-Mead算法(智能优化之下山单纯形法)

2023-11-05 05:30

本文主要是介绍Nelder-Mead算法(智能优化之下山单纯形法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Nelder-Mead 算法是一种求多元函数局部最小值的算法,其优点是不需要函数可导并能较快收敛到局部最小值。

该算法需要提供函数自变量空间中的一个初始点x1,算法从该点出发寻找局部最小值

Nelder-Mead方法也称下山单纯形法,是由John Nelder & Roger Mead于1965年提出的一种求解数值优化问题的启发式搜索

给定n+1个顶点(i=1,2...,n+1),这些点对应的函数值为

开始按以下算法步骤进行,直到满足特定的精度条件或者循环次数时退出循环:


一、按照目标函数值对n+1个点进行从好到差排序,确定最坏点,第二最坏点和最好点

二、计算除去最差点外其他点的中心点

三、反射操作,计算反射点(就是最坏的点,C是第二步计算出的中心点,是反射系数,等于1)

  • 3.1若(意思是反射点的结果在最好点和第二差点之间)令(也 就是去掉了最坏点),并进入下一层循环。

  • 3.2若(意思是反射点的结果比最好的点还要好),计算拓展点

3.2.1若(意思是扩展点得到的结果比反射点要好),令,并进入下一 层循环

3.2.2否则(扩展失败的意思),进入下一层循环

  • 3.3若(意思是反射点的结果在最差点和第二差点之间且比最差点要 好)此时进行向外压缩操作,计算

3.3.1若(意思是向外压缩点比反射点结果要好),令(替换掉最 差点),并进入下一层循环

3.3.2否则执行最后一步

  • 3.4若(意思是反射点的结果比最差点还要糟糕),此时进行向内压缩操作,计算

3.4.1若,令,并进入下一层循环

3.4.2否则进入下一层循环

  • 3.5若上述四个条件都不符合,则令(i=2,...n+1),并且将赋值给并进入下一层循环

下面以二元函数为例,使用python编程

给定初始点:[0,0],[1.2,0],[0,0.8]

def func(x1, x2):return x1 * x1 - 4 * x1 + x2 * x2 - x2 - x1 * x2# 创建一个简单的二维数组
x = [[0, 0, 0], [1.2, 0, 0], [0, 0.8, 0]]
n = len(x)
m=0
for m in range(20):# 第一步,将这些点按照从小到大排序# 计算每个点对应的函数值for i in range(n):x[i][2] = func(x[i][0], x[i][1])# 按照目标函数值进行排序---从小到大排序for i in range(n - 1):for j in range(n - 1):if x[j][2] > x[j + 1][2]:temp = x[j]x[j] = x[j + 1]x[j + 1] = tempprint("第{}次循环得到的最优值为:".format(m),x[0])# 第二步,计算除去最坏点的其他点的中心点c = [0, 0, 0]  # 进行一个初始化c[0] = (x[0][0] + x[1][0]) / 2c[1] = (x[0][1] + x[1][1]) / 2c[2] = func(c[0], c[1])# 第三步进行反射操作,计算反射点xr = [0, 0, 0]xr[0] = 2 * c[0] - x[2][0]xr[1] = 2 * c[1] - x[2][1]xr[2] = func(xr[0], xr[1])if x[0][2] <= xr[2] < x[1][2]:x[2] = xrcontinueelif xr[2] < x[0][2]:xe = [0, 0, 0]xe[0] = 3 * c[0] - 2 * x[2][0]xe[1] = 3 * c[1] - 2 * x[2][1]xe[2] = func(xe[0], xe[1])if xe[2] < xr[2]:x[2] = xecontinueelse:x[2] = xrcontinueelif x[1][2] <= xr[2] < x[2][2]:c1 = [0, 0, 0]c1[0] = c[0] + (xr[0] - c[0]) / 2c1[1] = c[1] + (xr[1] - c[1]) / 2c1[2] = func(c1[0], c1[1])if c1[2] < xr[2]:x[2] = c1continueelse:passelif x[2][2] <= xr[2]:c2 = [0, 0, 0]c2[0] = c[0] + (x[2][0] - c[0])c2[1] = c[1] + (x[2][1] - c[1])c2[2]=func(c2[0],c2[1])if c2[2]<x[2][2]:x[2]=c2continueelse:passi=1for i in range(n):x[i][0]=x[0][0]+(x[i][0]-x[0][0])/2x[i][1] = x[0][1] + (x[i][1] - x[0][1]) / 2x[i][2]=func(x[i][0],x[i][1])continue

运行结果如下图所示:

这篇关于Nelder-Mead算法(智能优化之下山单纯形法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/347720

相关文章

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时