大数据毕业设计选题推荐-旅游景点游客数据分析-Hadoop-Spark-Hive

本文主要是介绍大数据毕业设计选题推荐-旅游景点游客数据分析-Hadoop-Spark-Hive,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者主页:IT毕设梦工厂✨
个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。
☑文末获取源码☑
精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

文章目录

  • 一、前言
  • 二、开发环境
  • 三、系统界面展示
  • 四、部分代码设计
  • 五、论文参考
  • 六、系统视频
  • 结语

一、前言

随着现代科技的发展和互联网的普及,大数据技术正在逐渐渗透到各行各业,包括旅游业。传统的旅游业数据分析主要依赖于抽样调查和实地考察,这种方法不仅需要大量的人力和物力,而且往往存在数据不准确的问题。然而,大数据技术的出现,使得我们可以更准确、更快速地分析游客数据,从而更好地规划旅游资源和服务。因此,基于大数据的旅游景点游客数据分析成为了一个重要的研究课题。

尽管大数据技术为旅游数据分析提供了新的可能性,但现有的解决方案仍存在一些问题。首先,许多数据分析模型过于依赖历史数据,对于新兴的旅游现象和趋势预测不够准确。其次,现有的数据分析方法往往忽视了游客行为的动态性和复杂性,无法反映游客的需求和偏好。此外,许多数据分析工具缺乏直观的可视化界面,使得结果难以理解。因此,我们需要一个更有效的基于大数据的旅游景点游客数据分析方法。

本课题的研究目的是开发一个基于大数据的旅游景点游客数据分析系统,该系统能够实现以下功能:
游客量季节统计分析:分析不同季节的游客数量,了解游客的需求旺季和淡季,以便更好地调配旅游资源。
游客量周统计分析:分析一周内每天的游客数量,了解游客的出行习惯,为景点的开放时间和休息安排提供参考。
景点游客量排行:对不同景点的游客数量进行排名,了解哪些景点受欢迎,哪些景点需要改进。
游客年龄段数据分析:分析不同年龄段的游客数量和比例,了解游客的构成和需求特点,以便更好地满足不同群体的需求。
游客量同期对比数据:比较不同年份同期的游客数量,了解景点的成长情况和市场变化趋势。

本课题的研究意义在于为旅游业提供一个更有效的游客数据分析方法,从而帮助旅游部门更好地规划和管理旅游资源和服务。具体来说,本课题的研究意义包括以下几个方面:
提高旅游管理的科学性和有效性:通过大数据分析,旅游部门可以更准确地了解游客的需求和行为特点,从而制定更科学、更有效的管理策略。
优化旅游资源配置:通过分析游客数量和行为数据,旅游部门可以更好地调配旅游资源,提高资源利用效率。
提高游客满意度:通过了解游客的需求和行为特点,旅游部门可以提供更符合游客喜好的服务和活动,从而提高游客满意度。
促进旅游业发展:通过大数据分析,旅游部门可以更好地了解市场趋势和新兴的旅游现象,从而制定更有效的营销策略和发展规划。

二、开发环境

  • 大数据技术:Hadoop、Spark、Hive
  • 开发技术:Python、Django框架、Vue、Echarts、机器学习
  • 软件工具:Pycharm、DataGrip、Anaconda、VM虚拟机

三、系统界面展示

  • 基于大数据的旅游景点游客数据分析系统界面展示:
    基于大数据的旅游景点游客数据分析
    基于大数据的旅游景点游客数据分析-游客量季节统计
    基于大数据的旅游景点游客数据分析-游客量周统计
    基于大数据的旅游景点游客数据分析-景点游客量周排行
    基于大数据的旅游景点游客数据分析-游客量日统计
    基于大数据的旅游景点游客数据分析-游客量同期对比

四、部分代码设计

  • 基于大数据的旅游景点游客数据分析项目实战-代码参考:

class MySpider:def open(self):self.con = sqlite3.connect("lvyou.db")self.cursor = self.con.cursor()sql = "create table lvyou (title varchar(512),price varchar(16),destination varchar(512),feature text)"try:self.cursor.execute(sql)except:self.cursor.execute("delete from Lvyou")self.baseUrl = "https://huodong.ctrip.com/activity/search/?keyword=%25e9%25a6%2599%25e6%25b8%25af"self.chrome = webdriver.Chrome()self.count = 0self.page = 0self.pageCount = 0def close(self):self.con.commit()self.con.close()def insert(self, title, price, destination, feature):sql = "insert into lvyou (title,price,destination,feature) values (?,?,?,?)"self.cursor.execute(sql, [title, price, destination, feature])def show(self):self.con = sqlite3.connect("lvyou.db")self.cursor = self.con.cursor()self.cursor.execute("select title,price,destination,feature from lvyou")rows = self.cursor.fetchall()for row in rows:print(row)self.con.close()def spider(self, url):try:self.page += 1print("\nPage", self.page, url)self.chrome.get(url)time.sleep(3)html = self.chrome.page_sourceroot = BeautifulSoup(html, "lxml")div = root.find("div", attrs={"id": "xy_list"})divs = div.find_all("div", recursive=False)for i in range(len(divs)):title = divs[i].find("h2").textprice = divs[i].find("span", attrs={"class": "base_price"}).textdestination = divs[i].find("p", attrs={"class": "product_destination"}).find("span").textfeature = divs[i].find("p", attrs={"class": "product_feature"}).textprint(title, '\n预付:', price, "\n", destination, feature)if self.page == 1:link = root.find("div", attrs={"class": "pkg_page basefix"}).find_all("a")[-2]self.pageCount = int(link.text)print(self.pageCount)if self.page < self.pageCount:url = self.baseUrl + "&filters=p" + str(self.page + 1)self.spider(url)self.insert(title, price, destination, feature)except Exception as err:print(err)def process(self):url = "https://huodong.ctrip.com/activity/search/?keyword=%25e9%25a6%2599%25e6%25b8%25af"self.open()self.spider(url)self.close()'''
spider = MySpider()
spider.open()
spider.spider("https://huodong.ctrip.com/activity/search/?keyword=%25e9%25a6%2599%25e6%25b8%25af")
spider.close()
'''
spider = MySpider()while True:print("1.爬取")print("2.显示")print("3.退出")s = input("请选择(1,2,3):")if s == "1":print("Start.....")spider.process()print("Finished......")elif s == "2":spider.show()else:break

五、论文参考

  • 计算机毕业设计选题推荐-基于大数据的旅游景点游客数据分析系统-论文参考:
    计算机毕业设计选题推荐-基于大数据的旅游景点游客数据分析系统-论文参考

六、系统视频

基于大数据的旅游景点游客数据分析-项目视频:

大数据毕业设计选题推荐-旅游景点游客数据分析-Hadoop

结语

大数据毕业设计选题推荐-旅游景点游客数据分析-Hadoop-Spark-Hive
大家可以帮忙点赞、收藏、关注、评论啦~
源码获取:私信我

精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

这篇关于大数据毕业设计选题推荐-旅游景点游客数据分析-Hadoop-Spark-Hive的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/347499

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

hadoop开启回收站配置

开启回收站功能,可以将删除的文件在不超时的情况下,恢复原数据,起到防止误删除、备份等作用。 开启回收站功能参数说明 (1)默认值fs.trash.interval = 0,0表示禁用回收站;其他值表示设置文件的存活时间。 (2)默认值fs.trash.checkpoint.interval = 0,检查回收站的间隔时间。如果该值为0,则该值设置和fs.trash.interval的参数值相等。

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数