详细讲解如何求解「内向基环森林」问题

2023-11-05 01:20

本文主要是介绍详细讲解如何求解「内向基环森林」问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述

这是 LeetCode 上的 「2876. 有向图访问计数」 ,难度为 「困难」

Tag : 「基环森林」、「内向基环树」、「拓扑排序」、「图」、「BFS」

现有一个有向图,其中包含 n 个节点,节点编号从 0n - 1。此外,该图还包含了 n 条有向边。

给你一个下标从 0 开始的数组 edges,其中 edges[i] 表示存在一条从节点 i 到节点 edges[i] 的边。

想象在图上发生以下过程:

你从节点 x 开始,通过边访问其他节点,直到你在 此过程 中再次访问到之前已经访问过的节点。

返回数组 answer 作为答案,其中 answer[i] 表示如果从节点 i 开始执行该过程,你可以访问到的不同节点数。

示例 1: alt

输入:edges = [1,2,0,0]

输出:[3,3,3,4]

解释:从每个节点开始执行该过程,记录如下:
- 从节点 0 开始,访问节点 0 -> 1 -> 2 -> 0 。访问的不同节点数是 3 。
- 从节点 1 开始,访问节点 1 -> 2 -> 0 -> 1 。访问的不同节点数是 3 。
- 从节点 2 开始,访问节点 2 -> 0 -> 1 -> 2 。访问的不同节点数是 3 。
- 从节点 3 开始,访问节点 3 -> 0 -> 1 -> 2 -> 0 。访问的不同节点数是 4 。

示例 2: alt

输入:edges = [1,2,3,4,0]

输出:[5,5,5,5,5]

解释:无论从哪个节点开始,在这个过程中,都可以访问到图中的每一个节点。

提示:


内向基环森林 + 拓扑排序

根据题意,共 n 个点,n 条边,利用 edges,将 iedges[i] 连有向边,可知每个点有唯一的出边,因此这是一张可能包含多棵「内向基环树」的「基环森林」。

基环树是指其具有 个点 条边的联通块,而「内向」是指树中任意节点有且只有一条出边,对应的「外向」是指树中任意节点有且只有一条入边。

例如,左图内向,右图外向:

alt

显然,可根据当前节点是否在“环内”进行分情况讨论:

  • 对于「环内」节点来说,其答案为环节点个数;
  • 对于「环外」节点来说,直观感受应该是由环上节点转移而来。但由于本题给定的是「内向基环树」,因此我们需要对原图进行“反向”,然后从环内节点开始,进行 BFS ,从而更新其余非环节点答案。

具体的,我们使用如下思路进行求解:

  1. 创建大小为 n 的数组 in,进行入度统计;
  2. 根据入度进行「拓扑排序」,剩余满足 的点,为「环内」的点。我们可处理出每个点所在环的大小,环的大小为这些点的答案。处理过程中收集这些「环内」的点(将来要从它们出发,更新其他「环外」节点)
  3. 对原图进行“反向”,从收集好的「环内」点进行出发,运用 BFS 得出剩余点答案。

Java 代码:

class Solution {
    int N = 200010, M = N, idx = 0;
    int[] he = new int[N], e = new int[M], ne = new int[M];
    void add(int a, int b) {
        e[idx] = b;
        ne[idx] = he[a];
        he[a] = idx++;
    }
    public int[] countVisitedNodes(List<Integer> edges) {
        int n = edges.size();
        int[] in = new int[n], ans = new int[n];
        for (int x : edges) in[x]++;
        Deque<Integer> d = new ArrayDeque<>();
        for (int i = 0; i < n; i++) {
            if (in[i] == 0) d.addLast(i);
        }
        while (!d.isEmpty()) {
            int t = edges.get(d.pollFirst());
            if (--in[t] == 0) d.addLast(t);
        }
        // 处理环上的
        Set<Integer> set = new HashSet<>();
        for (int i = 0; i < n; i++) {
            if (in[i] == 0continue;
            List<Integer> list = new ArrayList<>();
            list.add(i);
            int j = edges.get(i), val = 1;
            while (j != i) {
                list.add(j);
                j = edges.get(j);
                val++;
            }
            for (int x : list) {
                set.add(x);
                in[x] = 0;
                ans[x] = val;
            }
        }
        // 建立反向图, 处理非环上的, 从环内点出发进行往外更新
        Arrays.fill(he, -1);
        for (int i = 0; i < n; i++) add(edges.get(i), i);
        for (int u : set) {
            int val = ans[u];
            Deque<Integer> de = new ArrayDeque<>();
            de.addLast(u);
            while (!de.isEmpty()) {
                int sz = de.size();
                while (sz-- > 0) {
                    int t = de.pollFirst();
                    ans[t] = val;
                    for (int i = he[t]; i != -1; i = ne[i]) {
                        int j = e[i];
                        if (ans[j] != 0continue;
                        de.addLast(j);
                    }
                }
                val++;
            }
        }
        return ans;
    }
}

C++ 代码:

class Solution {
public:
    int he[200010], e[200010], ne[200010], idx;
    void add(int a, int b) {
        e[idx] = b;
        ne[idx] = he[a];
        he[a] = idx++;
    }
    vector<intcountVisitedNodes(vector<int>& edges) {
        int n = edges.size();
        vector<intin(n, 0)ans(n, 0);
        for (int x : edges) in[x]++;
        queue<int> d;
        for (int i = 0; i < n; i++) {
            if (in[i] == 0) d.push(i);
        }
        while (!d.empty()) {
            int t = edges[d.front()];
            d.pop();
            if (--in[t] == 0) d.push(t);
        }
        set<int> s;
        for (int i = 0; i < n; i++) {
            if (in[i] == 0continue;
            vector<intlist;
            list.push_back(i);
            int j = edges[i], val = 1;
            while (j != i) {
                list.push_back(j);
                j = edges[j];
                val++;
            }
            for (int x : list) {
                s.insert(x);
                in[x] = 0;
                ans[x] = val;
            }
        }
        memset(he, -1sizeof(he));
        for (int i = 0; i < n; i++) add(edges[i], i);
        for (int u : s) {
            int val = ans[u];
            queue<int> de;
            de.push(u);
            while (!de.empty()) {
                int sz = de.size();
                while (sz-- > 0) {
                    int t = de.front();
                    de.pop();
                    ans[t] = val;
                    for (int i = he[t]; i != -1; i = ne[i]) {
                        int j = e[i];
                        if (ans[j] != 0continue;
                        de.push(j);
                    }
                }
                val++;
            }
        }
        return ans;
    }
};
  • 时间复杂度:统计入度复杂度为 ;拓扑排序复杂度为 ;统计「环内」节点答案复杂度为 ;统计「环外」答案复杂度为 。整体复杂度为
  • 空间复杂度:

最后

这是我们「刷穿 LeetCode」系列文章的第 No.2876 篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先把所有不带锁的题目刷完。

在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。

为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:https://github.com/SharingSource/LogicStack-LeetCode 。

在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。

更多更全更热门的「笔试/面试」相关资料可访问排版精美的 合集新基地 🎉🎉

本文由 mdnice 多平台发布

这篇关于详细讲解如何求解「内向基环森林」问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/346449

相关文章

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

如何在Mac上安装并配置JDK环境变量详细步骤

《如何在Mac上安装并配置JDK环境变量详细步骤》:本文主要介绍如何在Mac上安装并配置JDK环境变量详细步骤,包括下载JDK、安装JDK、配置环境变量、验证JDK配置以及可选地设置PowerSh... 目录步骤 1:下载JDK步骤 2:安装JDK步骤 3:配置环境变量1. 编辑~/.zshrc(对于zsh

如何解决idea的Module:‘:app‘platform‘android-32‘not found.问题

《如何解决idea的Module:‘:app‘platform‘android-32‘notfound.问题》:本文主要介绍如何解决idea的Module:‘:app‘platform‘andr... 目录idea的Module:‘:app‘pwww.chinasem.cnlatform‘android-32

kali linux 无法登录root的问题及解决方法

《kalilinux无法登录root的问题及解决方法》:本文主要介绍kalilinux无法登录root的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录kali linux 无法登录root1、问题描述1.1、本地登录root1.2、ssh远程登录root2、

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

使用Node.js制作图片上传服务的详细教程

《使用Node.js制作图片上传服务的详细教程》在现代Web应用开发中,图片上传是一项常见且重要的功能,借助Node.js强大的生态系统,我们可以轻松搭建高效的图片上传服务,本文将深入探讨如何使用No... 目录准备工作搭建 Express 服务器配置 multer 进行图片上传处理图片上传请求完整代码示例

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

Pyserial设置缓冲区大小失败的问题解决

《Pyserial设置缓冲区大小失败的问题解决》本文主要介绍了Pyserial设置缓冲区大小失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录问题描述原因分析解决方案问题描述使用set_buffer_size()设置缓冲区大小后,buf

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题