Geospatial Data 在 Nebula Graph 中的实践

2023-11-04 10:10

本文主要是介绍Geospatial Data 在 Nebula Graph 中的实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文首发于 Nebula Graph Community 公众号

Geospatial Data 在 Nebula Graph 中的实践

本文主要介绍了地理空间数据(Geospatial Data)以及它在 Nebula Graph 中的具体实践。

Geospatial Data 在 Nebula Graph 中的实践

什么是 Geospatial Data

地理空间数据(Geospatial Data)是包含简单地理空间要素信息的数据,比如点(point)、线(linestring)、多边形(polygon),或是其他更复杂的形状。

Nebula Graph 在 2.6 版本中引入了对 Geospatial Data 完整的支持,包括地理空间数据的存储、计算,以及索引。Nebula Graph 目前支持 Geography 类型的地理空间数据,Geography 类型是建模在地球空间坐标系上由经纬度坐标对表示的地理位置信息。

Geospatial Data – 地理空间数据使用

创建 Schema

这里仅以 Tag 为例,当然 Edgetype 上同样可以将 Geography 类型作为属性列。

Nebula 目前支持点、线、多边形三种空间数据类型。下面介绍一下如何如何创建 Geography 类型属性以及如何插入地理空间数据到 Nebula 中。

CREATE TAG any_shape(geo geography);
CREATE TAG only_point(geo geography(point));
CREATE TAG only_linestring(geo geography(linestring));
CREATE TAG only_polygon(geo geography(polygon));

geography 属性后面没有指定具体的地理形状信息时,代表该列可以存储任意地理形状的数据;当指定形状类型时,则代表只能存储该形状的地理数据,比如 geography(point),就代表该列只能存储 point 形状的地理位置信息。

插入数据

向 Tag any_shapegeo 列插入数据:

INSERT VERTEX any_shape(geo) VALUES "101":(ST_GeogFromText("POINT(120.12 30.16)"));
INSERT VERTEX any_shape(geo) VALUES "102":(ST_GeogFromText("LINESTRING(3 8, 4.7 73.23)"));
INSERT VERTEX any_shape(geo) VALUES "103":(ST_GeogFromText("POLYGON((75.3 45.4, 112.5 53.6, 122.7 25.5, 93.9 28.6, 75.3 45.4))"));

向 Tag only_pointgeo 列插入数据:

INSERT VERTEX only_point(geo) VALUES "201":(ST_Point(120.12,30.16)"));;

向 Tag only_linestringgeo 插入数据:

INSERT VERTEX only_linestring(geo) VALUES "302":(ST_GeogFromText("LINESTRING(3 8, 4.7 73.23)"));

向 Tag only_polygongeo 列插入数据:

INSERT VERTEX only_polygon(geo) VALUES "403":(ST_GeogFromText("POLYGON((75.3 45.4, 112.5 53.6, 122.7 25.5, 93.9 28.6, 75.3 45.4))"));

当插入地理数据形状不符合该列地理形状要求时,会报错无法插入:

(root@nebula) [geo]> INSERT VERTEX only_polygon(geo) VALUES "404":(ST_GeogFromText("POINT((75.3 45.4))"));
[ERROR (-1005)]: Wrong value type: ST_GeogFromText("POINT((75.3 45.4))")

我们可以看到地理空间数据插入方法比较奇特,和 int、string、bool 等基本类型的插入很不一样。

我们以 ST_GeogFromText("POINT(120.12 30.16)") 为例,ST_GeogFromText 是一个地理位置信息解析函数,它接受一个 string 类型的 WKT(Well-Known Text)标准格式表示的地理位置数据:

POINT(120.12 30.16) 代表一个东经 120°12′,北纬 30°16′ 的地理位置点。ST_GeogFromText 函数会从 wkt 参数中解析并构造一个 geography 数据对象,然后 INSERT 语句会将其以 WKB(Well-Known Binary)标准存储在 Nebula 中。

Geospatial functions – 地理空间函数

Nebula 支持的地理空间函数可以分为以下几大类:

  • 构造函数
    • ST_Point(longitude, latitude),根据一对经纬度构造一个 geography point 对象
  • 解析函数
    • ST_GeogFromText(wkt_string),从 wkt 文本中解析 geography 对象
    • ST_GeogFromWKB(wkb_string),从 wkb 文本中解析 geography 对象 # 尚未正式支持,因为 Nebula还未支持二进制字符串
  • 格式设置函数
    • ST_AsText(geogrpahy),将 geogrpahy 对象以 wkt 文本格式输出
    • ST_AsBinary(geography),将 geography 对象以 wkb 文本格式输出 # 尚未正式支持,因为 Nebula 还未支持二进制字符串
  • 转换函数
    • ST_Centroid(geography),计算 geography 对象的重心,重心是一个 geography point 对象
  • 谓词函数
    • ST_Intersects(geography_1, geography_2),判断两个 geography 对象是否相交
    • ST_Covers(geography_1, geography_2),判断第一个 geography 对象是否完全覆盖第二个
    • ST_CoveredBy(geography_1, geography_2),ST_Covers 的反义词
    • ST_DWithin(geography_1, geography_2, distance_in_meters),判断两个 geography 对象的最短距离是否小于给定距离
  • 度量函数
    • ST_Distance(geography_1, geography_2),计算两个 geography 对象之间的距离

这些函数接口遵循 OpenGIS Simple Feature Access 以及 ISO SQL/MM 标准,具体用法参见Nebula 文档

Geospatial index – 地理空间索引

什么是地理空间索引?

地理空间索引用于基于空间谓词函数的的地理形状的快速过滤,如:ST_Intersects、ST_Covers 等。

Nebula 使用Google S2库做空间索引。

S2 库将地球表面投影到一个外切的正方体上,然后对正方体的每一个正方形表面递归地进行 n 次四等,最后使用一条空间填充曲线–希尔伯特曲线去连接这些小正方格子的中心。

当 n 无穷大时,这条希尔伯特曲线就几乎填满了正方形。

S2 库使用的是 30 阶的希尔伯特曲线。

oPuZvt.png

如下图, 是用希尔伯特曲线填充地地球表面的示意图:

oPuPED.png

可以看到,地球表面最终被这些希尔伯特曲线划分成了一个个单元格。对于地球表面的任意地理形状,比如一个城市、一条河流、一个人的位置我们都可以用若干个这样的格子去完全覆盖住这个地理形状。

每个格子都有一个唯一的 int64 的 CellID 来标识。因此,地理对象的空间索引就是构建完全覆盖该地理形状的 S2 格子的集合。

当构建地理空间对象的索引时,会构造一个完全覆盖被索引对象的不同 S2 单元格的集合。基于空间谓词函数的索引查询通过查找覆盖所查询对象的 S2 单元格的集合与覆盖被索引对象的 S2 单元格之间的交集,来快速过滤掉大量不相关的地理对象。

创建 geography 索引
CREATE TAG any_shape_geo_index on any_shape(geo)

对于形状为 point 的地理数据,可以用一个 level 为 30 的 S2 单元格来表示它,因此一个 point 对应一个索引条目;对于形状为 linestring 和 polygon 的地理数据,我们使用多个不同 level 的 S2 单元格来覆盖,因此会对应多个索引条目;

空间索引会用来加速所有 geo 谓词的查找速度,比如对于如下语句

LOOKUP ON any_shape WHERE ST_Intersects(any_shape.geo, ST_GeogFromText("LINESTRING(3 8, 4.7 73.23)"));

当 any_shape 的 geo 列上没有空间索引时,该语句会先将 any_shape 的所有数据读到内存,然后用来计算是否和点(3.0, 8.0)相交,这个计算的开销一般是比较昂贵的。当 any_shape 的数据量较大时,计算开销将难以接受。

而当 any_shape 的 geo 列有空间索引时,该语句会首先用空间索引过滤掉绝大部分和该线绝对不相交的数据,最终读到内存的还是会有部分可能相交的,因此还需要进行一次计算。这样空间索引就以很小的代价快速过滤掉了大部分不可能相交的数据,最终进行精确过滤的只有少部分,极大的降低了计算开销。


交流图数据库技术?加入 Nebula 交流群请先填写下你的 Nebula 名片,Nebula 小助手会拉你进群~~

这篇关于Geospatial Data 在 Nebula Graph 中的实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/345057

相关文章

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

linux安装、更新、卸载anaconda实践

《linux安装、更新、卸载anaconda实践》Anaconda是基于conda的科学计算环境,集成1400+包及依赖,安装需下载脚本、接受协议、设置路径、配置环境变量,更新与卸载通过conda命令... 目录随意找一个目录下载安装脚本检查许可证协议,ENTER就可以安装完毕之后激活anaconda安装更