高分7(GF7)卫星数据制作平原地区DSM/DEM(二)

2023-11-04 09:20

本文主要是介绍高分7(GF7)卫星数据制作平原地区DSM/DEM(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

李国春

(接前)

四、参数设置与质量控制

控制质量的参数主要是图3中右侧的22个参数,前4个我们说过是控制处理区域的,单位为像元。这里不再赘述。

第5个参数 核线搜索长度,单位也是像元数(下同)。是在核线上的搜索范围。由于GF7的设计特点,这里可以设置成最大高程(m)的一半稍多一些。这个值太小在搜索范围找不到同名点会导致搜索失败。太大也容易在真实范围之外找到伪匹配点,还浪费搜索时间。比方最高目标100m高,这个参数最少应该在50以上。

第6个参数 匹配长度。取来一定长度的带容差的后视数据,在搜索长度范围内与核线数据移动匹配,得到相似度最高的匹配后,记录移动的位移,作为像点位移。并记录该位置的相似度。可见,这个匹配长度越短,位置匹配越精确,但是这个长度太短也会造成很多的误判,导致过多的异常匹配。随着这个长度的增加,匹配越稳定,误判显著减少,但是匹配结果会表现的拖延和粘滞,表现出边缘匹配的模糊不齐,尤其是在沟坎、悬崖和建筑物边缘识别上造成较大误差。所以设计二次配准就是分别进行一次长配准长度和一次短配准长度来进行互补。见图13、图14。

图13参数匹配长度较短时匹配结果比较破碎

图14参数匹配长度较长时匹配结果发生糊图

第7个参数 核线宽度容差。前面讲了,由于前后视扫描和核线图像等多方面原因所造成的误差,不能仅仅使用一条核线进行匹配,需要进行一下宽度的扩展。这个值如果设置很窄,也容易得到不稳定的破碎的匹配结果。如果这个值设置过宽,就相当于有一定长度和宽度的NCC面匹配,会显著增加处理时间。事实上,这个容差值过宽并不能一定会提高匹配质量和增加匹配稳定度,保持适中即可。见图15、图16。

图15 参数核线容差为1时的结果

图16 参数核线容差为16时的结果

第8个参数 匹配步长。这个参数是指示每一步匹配像元间隔的间距。最小为1,表示每次匹配移动一个像元,或者说是逐像元匹配。设置大于1的值每次匹配跳过该值这么多像元。从处理精度来看这个值当然是1时最好,但是会极大消耗处理时间。见图17。

图17 参数匹配步长分别为8、4、1时的结果

第9个参数 相似度阈值。这是用于判定匹配质量的一个标准,表示低于此阈值的像点位移已经不再被信任,直接删掉用一个缺省填充值代替。这里的使用一个浮点数0.0001来代替高程。其实选择输出了可信度图像以后,用户也可以在后续从处理中,根据这里的相似度系数自行判断高程的取舍。

这个参数在这里设置只是根据可靠性指数(单独的一层数据similarity)对结果进行一次过滤。其实这个可以用菜单在任何时候过滤。方法是:①勾选待过滤的高程层(图18中红框)。②选择图18中的菜单项。见下一小节后处理。

第10~14的5个参数时二次匹配使用的参数。与第一次匹配的5~9的5个参数意义相同。二次匹配的设计意图是进行两次参数不同的匹配进行互补,以提高匹配质量。这5个参数中的任意一个设置为0时,忽略第2次配准。

第15个参数 孤岛检测。自动对像元直径小于等于此值的孤立高值图斑(噪音)进行消除。也可以在下一小节的后处理部分进行进一步处理。

第16个参数 洼地检测。对洼地检测消除,同上。

第17个参数 滤波窗口宽度。对第一、二次配准的结果进行中值滤波的窗口宽度。也可以在处理完毕后使用DEM处理菜单对结果进行滤波。参见图12。

第18个参数 滤波迭代次数。和上一个参数结合使用以达到较好的滤波效果。

第19、20个参数 系统性误差纠正。计算得到的合成高程的误差被认为是线性的,用一个斜率和一个截距值进 。

加企鹅758461012,原来的满了。

这篇关于高分7(GF7)卫星数据制作平原地区DSM/DEM(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/344790

相关文章

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

springboot项目打jar制作成镜像并指定配置文件位置方式

《springboot项目打jar制作成镜像并指定配置文件位置方式》:本文主要介绍springboot项目打jar制作成镜像并指定配置文件位置方式,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录一、上传jar到服务器二、编写dockerfile三、新建对应配置文件所存放的数据卷目录四、将配置文

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模