西电数据挖掘实验三 关联规则挖掘 投票记录

2023-11-04 03:20

本文主要是介绍西电数据挖掘实验三 关联规则挖掘 投票记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.实验内容

1、数据来源

http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records

2、使用Apriori算法,支持度设为30%,置信度为90%,挖掘高置信度的规则。

2.实验结果

频繁项集输出(条件):支持度计数

规则输出({条件}{结论}置信度)

因gh党支持规则太多这里只截取部分

则可以得到高置信度的规则

比如基于mz党反对态度的高置信度规则有

{4, 6}, {12}, 0.9172932330827067

{12, 6}, {4}, 0.991869918699187

即如果mz党派人士对于4,6议题反对,那么也有极大可能反对12议题

如果mz党派人士对于12,6议题反对,那么也有极大可能反对4议题

3.实验代码

# -*- coding: utf-8 -*-
import pandas as pd
import numpy as npdef readData():data = pd.read_csv('house-votes-84.data', header=None)data = np.array(data)return datadef preProcessing(data, vote_y_n):'''数据预处理以按 y 或 n 寻找关联规则'''data_pre = []for data_line in data:tmp_data = []for i in range(1, len(data_line)):# 从第二列开始,将数据文件中的记录与当前的选择vote_y_n进行比较,若找到了相关记录,把下标存进去if (data_line[i] == vote_y_n):tmp_data.append(i)if (tmp_data == []):continue  # 如果当前这一条记录中没有任何一个项是vote_y_n对应的选项,那么不存储空列表,直接进行下一个记录的查找data_pre.append(tmp_data)return data_predef ppreProcessing(data, vote_y_n, party):'''数据预处理以按 y 或 n 和议员所属党派来寻找关联规则'''data_pre = []for data_line in data:tmp_data = []if data_line[0] == party:for i in range(1, len(data_line)):# 从第二列开始,将数据文件中的记录与当前的选择vote_y_n进行比较,若找到了相关记录,把下标存进去if (data_line[i] == vote_y_n):tmp_data.append(i)if (tmp_data == []):continue  # 如果当前这一条记录中没有任何一个项是vote_y_n或者这条记录不是对应party的议员对应的选项,那么不存储空列表,直接进行下一个记录的查找data_pre.append(tmp_data)return data_predef rule_mining(data, support, confidence):'''挖掘关联规则'''dic_1 = mining_first(data, support, confidence)# print(dic_1)dic_2 = mining_second(data, dic_1, support, confidence)# print(dic_2)dic_before = dic_2dic_r = []dic_r.append(dic_1)# 频繁项集产生的终止条件就是不再有新的频繁项集产生为止while (dic_before != {}):# dict_r里面存储的是频繁2-项集及之后的所有频繁项集dic_r.append(dic_before)dic_3 = mining_third(data, dic_before, support, confidence)dic_before = dic_3return dic_rpassdef mining_first(data, support, confidence):'''进行第一次挖掘挖掘候选1-项集'''dic = {}count = len(data)for data_line in data:# 对于数据集中的每一行投票数据for data_item in data_line:# 对于每一行数据中的下标(对应某个议题)if (data_item in dic):# 以键值对的形式进行存储和计数dic[data_item] += 1else:dic[data_item] = 1assert (support >= 0) and (support <= 1), 'suport must be in 0-1'# 依靠给定的支持度阈值和投票数据的总数的得到满足条件的最小支持度值val_suport = int(count * support)assert (confidence >= 0) and (confidence <= 1), 'coincidence must be in 0-1'# 如果键值对中的值大于或等于当前支持度阈值,则可以将该键值对作为频繁1-项集保留dic_1 = {}for item in dic:  # 如果对每一个议题的所选定的(y|n)进行计数,若计数总值超过了支持度所需要的计数,就把它放到下一个字典中if (dic[item] >= val_suport):dic_1[item] = dic[item]return dic_1def mining_second(data, dic_before, support, confidence):'''进行关联规则的二次挖掘挖掘出候选2-项集注:所有挖掘出来的频繁项集都是以字典的形式存储的,字典的键是频繁项集,1频繁项集用1-16个整数,表示这些议题在原数据集中的下标;多频繁集就是这些下标的一个元组隐藏含义是这些议题共同被投票为vote_y_n,字典的值就是这样的组合出现的次数'''# 每一次扩展频繁项集的时候产生一个临时dict用于保存那些通过频繁项集生成算法可以留下的项集# 但是还要对其中的结果进行支持度判断,才能确定最终留下的算法dic = {}count = len(data)count2 = 0# frq_temp={}for data_line in data:# 获取元素数量count_item = len(data_line)# 每两个组合计数for i in range(0, count_item - 1):# 外层循环,控制频繁2-项集中的第一个元素的取值for j in range(i + 1, count_item):# 内层循环,控制频繁2-项集中的第二个元素的取值if (data_line[i] in dic_before and data_line[j] in dic_before):count2 += 1tmp = (data_line[i], data_line[j])# frq_temp[tmp]=0if (tmp in dic):# 上同,使用键值对集合计数,只不过此时元素是二元的元组dic[tmp] += 1else:dic[tmp] = 1else:continue# 当两个项中有一个不是频繁1-项集,根据剪枝策略,这样组成的项不是频繁2-项集# print(dic)assert (support >= 0) and (support <= 1), 'suport must be in 0-1'assert (confidence >= 0) and (confidence <= 1), 'confidence must be in 0-1'dic_2 = {}# for item in dic:#    for data_line in data:#        tmp=item#        tmp1=data_line#        if(set(tmp).issubset(set(tmp1))):#            frq_temp[item]+=1for item in dic:count_item0 = dic_before[item[0]]count_item1 = dic_before[item[1]]# 判断 支持度 和 置信度# 判断置信度的时候对于一个无序的元组,任何一种方向的规则都有可能,都要进行比较if (dic[item] >= support * count):# and#    (dic[item] >= confidence *frq_temp[item])):dic_2[item] = dic[item]return dic_2def mining_third(data, dic_before, support, confidence):'''进行关联规则的三次挖掘挖掘出候选3-项集或者4-项集乃至n-项集'''# 频繁项集的产生使用Fk-1*Fk-1的策略frq_temp = {}dic_3 = {}for item0 in dic_before:# 外层循环控制频繁k-1项集中的某一项for item1 in dic_before:# 内层循环控制频繁k-1项集中的另一项if (item0 != item1):# print(item0,item1)item_len = len(item0)equal = Truetmp_item3 = []# 判断前n-1项是否一致for i in range(item_len - 1):tmp_item3.append(item0[i])if (item0[i] != item1[i]):equal = Falsebreakif (equal == True):# 如果两个Fk-1项具有k-2个公共前缀,那么就按照顺序,将其组合起来minitem = min(item0[-1], item1[-1])maxitem = max(item0[-1], item1[-1])tmp_item3.append(minitem)tmp_item3.append(maxitem)tmp_item3 = tuple(tmp_item3)frq_temp[tmp_item3] = 0dic_3[tmp_item3] = 0else:continue# print('dic_3:',dic_3)# 暴力统计支持度的方法,对于每一个数据项,看每个新找到的k项集是否包含在数据项中# 比较的方法,是对项的每一位进行判断,看这一位是否在数据项中for data_line in data:for item in dic_3:is_in = Truefor i in range(len(item)):if (item[i] not in data_line):is_in = False# 该候选k项集中的所有项都在数据项中,则可以将该项保留if (is_in == True):dic_3[item] += 1assert (support >= 0) and (support <= 1), 'suport must be in 0-1'assert (confidence >= 0) and (confidence <= 1), 'coincidence must be in 0-1'count = len(data)dic_3n = {}for item in dic_3:# 前一项的支持度计数,就是现在的项除去末尾的数字,通过键值对在原来的字典中查询的值count_item0 = dic_before[item[:-1]]# 判断 支持度 和 置信度if (dic_3[item] >= support * count):# and (dic_3[item] >= confidence * count_item0)):dic_3n[item] = dic_3[item]return dic_3ndef association_rules(freq_sets, min_conf):'''根据产生的频繁项集生成满足置信度要求的规则:param dict: 频繁项集的字典:param dict: 频繁项集字典中的频繁项集列表:param min_conf: 最小置信度:return: 规则列表'''rules = []max_len = len(freq_sets)for k in range(max_len - 1):for freq_set in freq_sets[k]:for i in range(k + 1, max_len):for sub_set in freq_sets[i]:if isinstance(freq_set, int):if freq_set in sub_set:conf = freq_sets[i][sub_set] / freq_sets[k][freq_set]b = list(sub_set)b.remove(freq_set)b = set(b)a = set()a.add(freq_set)rule = (a, b, conf)if conf >= min_conf:rules.append(rule)elif set(freq_set).issubset(set(sub_set)):conf = freq_sets[i][sub_set] / freq_sets[k][freq_set]rule = (set(freq_set), set(sub_set) - set(freq_set), conf)if conf >= min_conf:rules.append(rule)return rulesif (__name__ == '__main__'):data_row = readData()data_y = preProcessing(data_row, 'y')data_n = preProcessing(data_row, 'n')data_y_republican = ppreProcessing(data_row, 'y', 'republican')data_y_democrat = ppreProcessing(data_row, 'y', 'democrat')data_n_republican = ppreProcessing(data_row, 'n', 'republican')data_n_democrat = ppreProcessing(data_row, 'n', 'democrat')# 支持度support = 0.3# 置信度confidence = 0.9# 总的y规则与两个党派的y规则r_y = rule_mining(data_y, support, confidence)print('基于支持态度的全部频繁项集:\n', r_y)rule_y = association_rules(r_y, confidence)print('基于支持态度的规则:\n', rule_y)r_y_republican = rule_mining(data_y_republican, support, confidence)print('基于gh党支持态度的频繁项集:\n', r_y_republican)rule_y_republican = association_rules(r_y_republican, confidence)print('基于gh党支持态度的规则数:\n', len(rule_y_republican))print('基于gh党支持态度的规则:\n', rule_y_republican)r_y_democrat = rule_mining(data_y_democrat, support, confidence)print('基于mz党支持态度的频繁项集:\n', r_y_democrat)rule_y_democrat = association_rules(r_y_democrat, confidence)print('基于mz党支持态度的规则数:\n', len(rule_y_democrat))print('基于mz党支持态度的规则:\n', rule_y_democrat)# 总的n规则与两个党派的n规则r_n = rule_mining(data_n, support, confidence)print('基于反对态度的全部频繁项集:\n', r_n)rule_n = association_rules(r_n, confidence)print('基于反对态度的规则:\n', rule_n)r_n_republican = rule_mining(data_n_republican, support, confidence)print('基于gh党反对态度的频繁项集:\n', r_n_republican)rule_n_republican = association_rules(r_n_republican, confidence)print('基于gh党反对态度的规则数:\n', len(rule_n_republican))print('基于gh党反对态度的规则:\n', rule_n_republican)r_n_democrat = rule_mining(data_n_democrat, support, confidence)print('基于mz党反对态度的频繁项集和规则:\n', r_n_democrat)rule_n_democrat = association_rules(r_n_democrat, confidence)print('基于mz党反对态度的规则数:\n', len(rule_n_democrat))print('基于mz党反对态度的规则:\n', rule_n_democrat)

这篇关于西电数据挖掘实验三 关联规则挖掘 投票记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/342858

相关文章

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

关于Gateway路由匹配规则解读

《关于Gateway路由匹配规则解读》本文详细介绍了SpringCloudGateway的路由匹配规则,包括基本概念、常用属性、实际应用以及注意事项,路由匹配规则决定了请求如何被转发到目标服务,是Ga... 目录Gateway路由匹配规则一、基本概念二、常用属性三、实际应用四、注意事项总结Gateway路由

MYSQL关联关系查询方式

《MYSQL关联关系查询方式》文章详细介绍了MySQL中如何使用内连接和左外连接进行表的关联查询,并展示了如何选择列和使用别名,文章还提供了一些关于查询优化的建议,并鼓励读者参考和支持脚本之家... 目录mysql关联关系查询关联关系查询这个查询做了以下几件事MySQL自关联查询总结MYSQL关联关系查询

Redis 多规则限流和防重复提交方案实现小结

《Redis多规则限流和防重复提交方案实现小结》本文主要介绍了Redis多规则限流和防重复提交方案实现小结,包括使用String结构和Zset结构来记录用户IP的访问次数,具有一定的参考价值,感兴趣... 目录一:使用 String 结构记录固定时间段内某用户 IP 访问某接口的次数二:使用 Zset 进行

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据

关于rpc长连接与短连接的思考记录

《关于rpc长连接与短连接的思考记录》文章总结了RPC项目中长连接和短连接的处理方式,包括RPC和HTTP的长连接与短连接的区别、TCP的保活机制、客户端与服务器的连接模式及其利弊分析,文章强调了在实... 目录rpc项目中的长连接与短连接的思考什么是rpc项目中的长连接和短连接与tcp和http的长连接短

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Servlet中配置和使用过滤器的步骤记录

《Servlet中配置和使用过滤器的步骤记录》:本文主要介绍在Servlet中配置和使用过滤器的方法,包括创建过滤器类、配置过滤器以及在Web应用中使用过滤器等步骤,文中通过代码介绍的非常详细,需... 目录创建过滤器类配置过滤器使用过滤器总结在Servlet中配置和使用过滤器主要包括创建过滤器类、配置过滤

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6