【Java 数据结构 算法】宁可累死自己, 也要卷死别人 19 记事法

2023-11-04 02:59

本文主要是介绍【Java 数据结构 算法】宁可累死自己, 也要卷死别人 19 记事法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【Java 数据结构 & 算法】⚠️宁可累死自己, 也要卷死别人 19⚠️ 记事法

概述

从今天开始, 小白我将带大家开启 Java 数据结构 & 算法的新篇章.

在这里插入图片描述

时间复杂度

时间复杂度 (Time Complexity) 用来描述一个算法运行的时间.

在这里插入图片描述

大 O 记事法

大 O 记事法 (Big O Notation) 是用来描述一个算法最坏的情况下的时间复杂度. 大 O 记事法可以描述一个算法的上界, 通过常用输入大小函数来表示算法的最大运行时间.

大 O 记事法的定义:

  • 当 f(n) 和 g(n) 满足 f ( n ) < = c ∗ g ( n ) f(n) <= c*g(n) f(n)<=cg(n), n > = n ( ₀ ) n >= n(₀) n>=n(), c > 0 c > 0 c>0, n ( ₀ ) > 1 n(₀) > 1 n()>1
  • 可以得到函数 (算法) 的时间复杂度为 f ( n ) = O ( g ( n ) ) f(n) = O(g(n)) f(n)=O(g(n))

举个栗子, 2 n + 3 2n + 3 2n+3 的图像为:

在这里插入图片描述
我们可以得到:

  • 2 n + 3 < = 5 ∗ n 2n + 3 <= 5 * n 2n+3<=5n, ( f ( n ) = 2 n + 3 f(n) = 2n + 3 f(n)=2n+3, c = 5 c = 5 c=5, g ( n ) = n g(n) = n g(n)=n)
  • 所以 2 n + 3 2n + 3 2n+3 的时间复杂度为 O ( n ) O(n) O(n)

Ω \Omega Ω 记事法

Ω \Omega Ω 记事法 (Big Ω \Omega Ω Notation) 是用来描述一个算法最好的情况下的时间复杂度. 大 Ω \Omega Ω 记事法可以描述一个算法的下界, 通过常用输入大小函数来表示算法的最小运行时间.

Ω \Omega Ω 记事法的定义:

  • 当 f(n) 和 g(n) 满足 f ( n ) > = c ∗ g ( n ) f(n) >= c*g(n) f(n)>=cg(n), n > = n ( ₀ ) n >= n(₀) n>=n(), c > 0 c > 0 c>0, n ( ₀ ) > 1 n(₀) > 1 n()>1
  • 可以得到函数 (算法) 的时间复杂度为 f ( n ) = Ω ( g ( n ) ) f(n) = \Omega(g(n)) f(n)=Ω(g(n))

举个栗子, 2 n + 3 2n + 3 2n+3 的图像为:

在这里插入图片描述
我们可以得到:

  • 2 n + 3 > = 1 ∗ n 2n + 3 >= 1 * n 2n+3>=1n, ( f ( n ) = 2 n + 3 f(n) = 2n + 3 f(n)=2n+3, c = 1 c = 1 c=1, g ( n ) = n g(n) = n g(n)=n)
  • 所以 2 n + 3 2n + 3 2n+3 的时间复杂度为 Ω ( n ) \Omega(n) Ω(n)

Θ \Theta Θ 记事法

Θ \Theta Θ 记事法 (Big Θ \Theta Θ Notation) 是用来描述一个算法平均情况下的时间复杂度. 大 Θ \Theta Θ 记事法可以描述一个算法的下界, 通过常用输入大小函数来表示算法的最小运行时间.

Θ \Theta Θ 记事法的定义:

  • 当 f(n) 和 g(n) 满足 c 1 ∗ g ( n ) < = f ( n ) < = c 2 ∗ g ( n ) c1*g(n) <= f(n) <= c2*g(n) c1g(n)<=f(n)<=c2g(n), n > = n ( ₀ ) n >= n(₀) n>=n(), c 1 , c 2 > 0 c1, c2 > 0 c1,c2>0, n ( ₀ ) > 1 n(₀) > 1 n()>1
  • 可以得到函数 (算法) 的时间复杂度为 f ( n ) = Θ ( g ( n ) ) f(n) = \Theta(g(n)) f(n)=Θ(g(n))

举个栗子, 2 n + 3 2n + 3 2n+3 的图像为:

在这里插入图片描述
我们可以得到:

  • 1 ∗ n < = 2 n + 3 < = 5 ∗ n 1*n <= 2n + 3 <= 5*n 1n<=2n+3<=5n, ( f ( n ) = 2 n + 3 f(n) = 2n + 3 f(n)=2n+3, c 1 = 1 c1 = 1 c1=1, c 2 = 5 c2 = 5 c2=5, g ( n ) = n g(n) = n g(n)=n)
  • 所以 2 n + 3 2n + 3 2n+3 的时间复杂度为 Θ ( n ) \Theta(n) Θ(n)

这篇关于【Java 数据结构 算法】宁可累死自己, 也要卷死别人 19 记事法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/342751

相关文章

JSON字符串转成java的Map对象详细步骤

《JSON字符串转成java的Map对象详细步骤》:本文主要介绍如何将JSON字符串转换为Java对象的步骤,包括定义Element类、使用Jackson库解析JSON和添加依赖,文中通过代码介绍... 目录步骤 1: 定义 Element 类步骤 2: 使用 Jackson 库解析 jsON步骤 3: 添

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内

Java中使用Java Mail实现邮件服务功能示例

《Java中使用JavaMail实现邮件服务功能示例》:本文主要介绍Java中使用JavaMail实现邮件服务功能的相关资料,文章还提供了一个发送邮件的示例代码,包括创建参数类、邮件类和执行结... 目录前言一、历史背景二编程、pom依赖三、API说明(一)Session (会话)(二)Message编程客

Java中List转Map的几种具体实现方式和特点

《Java中List转Map的几种具体实现方式和特点》:本文主要介绍几种常用的List转Map的方式,包括使用for循环遍历、Java8StreamAPI、ApacheCommonsCollect... 目录前言1、使用for循环遍历:2、Java8 Stream API:3、Apache Commons

JavaScript中的isTrusted属性及其应用场景详解

《JavaScript中的isTrusted属性及其应用场景详解》在现代Web开发中,JavaScript是构建交互式应用的核心语言,随着前端技术的不断发展,开发者需要处理越来越多的复杂场景,例如事件... 目录引言一、问题背景二、isTrusted 属性的来源与作用1. isTrusted 的定义2. 为

Java循环创建对象内存溢出的解决方法

《Java循环创建对象内存溢出的解决方法》在Java中,如果在循环中不当地创建大量对象而不及时释放内存,很容易导致内存溢出(OutOfMemoryError),所以本文给大家介绍了Java循环创建对象... 目录问题1. 解决方案2. 示例代码2.1 原始版本(可能导致内存溢出)2.2 修改后的版本问题在

Java CompletableFuture如何实现超时功能

《JavaCompletableFuture如何实现超时功能》:本文主要介绍实现超时功能的基本思路以及CompletableFuture(之后简称CF)是如何通过代码实现超时功能的,需要的... 目录基本思路CompletableFuture 的实现1. 基本实现流程2. 静态条件分析3. 内存泄露 bug

Java中Object类的常用方法小结

《Java中Object类的常用方法小结》JavaObject类是所有类的父类,位于java.lang包中,本文为大家整理了一些Object类的常用方法,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. public boolean equals(Object obj)2. public int ha

SpringBoot项目中Maven剔除无用Jar引用的最佳实践

《SpringBoot项目中Maven剔除无用Jar引用的最佳实践》在SpringBoot项目开发中,Maven是最常用的构建工具之一,通过Maven,我们可以轻松地管理项目所需的依赖,而,... 目录1、引言2、Maven 依赖管理的基础概念2.1 什么是 Maven 依赖2.2 Maven 的依赖传递机

SpringBoot实现动态插拔的AOP的完整案例

《SpringBoot实现动态插拔的AOP的完整案例》在现代软件开发中,面向切面编程(AOP)是一种非常重要的技术,能够有效实现日志记录、安全控制、性能监控等横切关注点的分离,在传统的AOP实现中,切... 目录引言一、AOP 概述1.1 什么是 AOP1.2 AOP 的典型应用场景1.3 为什么需要动态插