本文主要是介绍libra 瑞士_瑞士科学家开发超快树脂3D打印技术,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
libra 瑞士
Scientists at the Laboratory of Applied Photonics Devices from the Swiss Federal Institute of Technology in Lausanne (EPFL) are developing a new high-performance 3D-printing technique. Their patent-pending volumetric printing technology features rotational exposure of photopolymer resins to radiation resulting in light-shaping. Another peculiarity is that the part is printed in a single step, not layer-by-layer.
位于洛桑的瑞士联邦技术学院(EPFL)的应用光子学设备实验室的科学家正在开发一种新型的高性能3D打印技术。 他们正在申请专利的体积印刷技术的特征是使光敏聚合物树脂旋转曝光,从而形成光。 另一个特点是零件是一步印刷的,而不是逐层印刷的。
The technology itself seems to be of US origin. At the beginning of the previous year, a team of scientists from Berkeley and Lawrence Livermore National Laboratory (LLNL) demonstrated Computed Axial Lithography (CAL), a 3D-printing method based on LLNL’s previous researches on resin 3D-printing technique that features holographic patterning of light fields. The models were initially formed by laser beam crossing, which is very complex and expensive. Therefore, it’s been decided to alter the technology in favor of rotational exposure of photopolymer resins.
该技术本身似乎是美国起源的。 在去年年初,来自伯克利和劳伦斯·利弗莫尔国家实验室(LLNL)的科学家团队展示了计算机轴向光刻(CAL),这是一种基于LLNL以前对树脂3D打印技术的研究(具有全息图案)的3D打印方法。的光场。 这些模型最初是通过激光束交叉形成的,这非常复杂且昂贵。 因此,已经决定改变技术以支持光敏聚合物树脂的旋转曝光。
Swiss technology is basically identical to CAL, the US-based method. On the whole, the product is constructed in a container with transparent resin that’s thoroughly cured by UV-laser input from the DLP modulator. The modulator provides multi-dimensional projection during the container’s rotation, which allows forming the desired shape. In order to avoid stray light beams, the overall light intensity must be limited. It is impossible to achieve one-stage solidifying with this technique, but continuous irradiation combined with constant container rotation accumulate required amounts of light fairly quickly.
瑞士技术基本上与美国的CAL方法相同。 总体而言,该产品采用透明树脂制成的容器制成,并通过DLP调制器输入的紫外线激光彻底固化。 调制器在容器旋转期间提供多维投影,从而可以形成所需的形状。 为了避免杂散光束,必须限制整体光强度。 用这种技术不可能实现一个阶段的固化,但是连续照射与恒定的容器旋转相结合会相当快地积累所需的光量。
When compared to traditional stereolithography (SLA), a faster production rate is not the only advantage featured by the Swiss development. Another advantage is that the model is constructed as a whole, rather than layer-by-layer which helps to retain durable details with isotropic properties. The product is manufactured without overhanging structure support, resulting in a wider range of delicate and fragile materials to choose from. Moreover, the technology allows utilizing high-viscosity resins and thermoreversible gels. In fact, the usage of high-viscosity resins is recommended since they benefit to printing resolution by lessening the diffusion blurring and enhancing light distribution. Such materials are also highly resistant to reactive species that may interfere with the product quality (e.g. radicals and oxygen).
与传统的立体光刻(SLA)相比,更快的生产率并不是瑞士发展的唯一优势。 另一个优点是该模型是整体构建的,而不是逐层构建的,这有助于保留具有各向同性特性的耐久细节。 该产品的制造无需悬垂的结构支撑,因此可以选择范围更广的精致和易碎材料。 而且,该技术允许利用高粘度树脂和热可逆凝胶。 实际上,建议使用高粘度树脂,因为它们可通过减少扩散模糊并增强光分布来提高打印分辨率。 此类材料还对可能干扰产品质量的React性物种(例如自由基和氧气)具有很高的抵抗力。
The developed technology will be a great contribution to biomedicine since it allows to 3D-print complex hydrogel supports. Producing high-quality blood vessels and hollow structures on ordinary devices printing “layer-by-layer” is difficult, since outcoming parts are not durable and may collapse under their own weight. Moreover, it is challenging to remove supports from delicate products and tissue samples. Therefore, it is hard to achieve success in 3D-bioprinting with ordinary machines because it requires tissue-like structures produced from delicate materials.
这项先进的技术可以3D打印复杂的水凝胶支持物,因此将对生物医学做出巨大贡献。 很难在普通的设备上“层层印刷”地生产高质量的血管和空心结构,因为成品零件不耐用,并且可能因自身重量而塌陷。 此外,从精细产品和组织样本中去除支撑物也具有挑战性。 因此,用普通机器在3D生物打印中很难取得成功,因为它需要用精致的材料制成的组织状结构。
Tomographic volumetric additive manufacturing allows printing details of 0.4-0.8 in. (1-2 cm) in just half a minute and even faster. For example, the 80 μm Notre Dame’s arched buttresses were printed in 19.5 s.
层析体积增材制造技术可以在半分钟内甚至更快地打印0.4-0.8英寸(1-2厘米)的细节。 例如,在19.5 s内印刷了80μm的Notre Dame拱形支撑。
Though this method is not particularly unique, Swiss scientists have to be credited for continuously improving the technology and making it commercial. Readily3D has been founded specifically for the latter reason. The team actively patents their developments and provides detailed reports. The topic is also researched by other pioneers of volumetric resin 3D-printing such as Daqri, the US-based startup and Cellink AB, a manufacturer of biomedical 3D-printers from Sweden.
尽管这种方法不是特别独特 ,但是瑞士科学家必须因不断改进该技术并使之商业化而受到赞誉。 Readily3D是专门为后者而创建的。 该团队积极为其开发申请专利,并提供详细的报告 。 其他体积树脂3D打印的先驱,例如美国的初创企业Daqri和瑞典的生物医学3D打印机制造商Cellink AB,也对该主题进行了研究。
翻译自: https://habr.com/en/company/top3dshop/blog/489124/
libra 瑞士
这篇关于libra 瑞士_瑞士科学家开发超快树脂3D打印技术的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!