20210414_24期_集成学习(中)_Task08_bagging的原理和案例分析

2023-11-04 01:10

本文主要是介绍20210414_24期_集成学习(中)_Task08_bagging的原理和案例分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

八、bagging的原理和案例分析

在这里插入图片描述

目录

  • 八、bagging的原理和案例分析
        • 来源
    • 8.1 Bagging
      • 8.1.1 Bagging概念原理
      • 9.1.2 Bagging流程
      • 9.1.2 Bagging算法特点:
      • 9.1.3 随机森林
    • 8.2 Bagging的例子
    • 参考资料


来源

Datewhle24期__集成学习(中) :
https://github.com/datawhalechina/team-learning-data-mining/tree/master/EnsembleLearning
作者:李祖贤、薛传雨、赵可、杨毅远、陈琰钰

论坛地址:
http://datawhale.club/t/topic/1574


8.1 Bagging

8.1.1 Bagging概念原理

  • 首先一张靶图回顾下方差(Variance)和偏差(Bias):
    在这里插入图片描述
    BiasVariance 分别代表两个概念。

  • Bagging是一种降低方差的技术

  • BaggingBootstrap aggregating的缩写。中文意思是自助聚合。而Bootstrap本身是一种有放回的抽样方法(可能抽到重复的样本)

  • Bagging是一种并行式的集成学习方法,即基学习器的训练之间没有前后顺序可以同时进行,Bagging使用**“有放回”采样的方式选取训练集**,对于包含m个样本的训练集,进行m次有放回的随机采样操作,从而得到m个样本的采样集,这样训练集中有接近36.8% [1] 的样本没有被采到。按照相同的方式重复进行,我们就可以采集到T个包含m个样本的数据集,从而训练出T个基学习器,最终对这T个基学习器的输出进行结合。
    lim ⁡ m ↦ ∞ ( 1 − 1 m ) m ↦ 1 e ≈ 0.368 \lim _{m \mapsto \infty}\left(1-\frac{1}{m}\right)^{m} \mapsto \frac{1}{e} \approx 0.368 mlim(1m1)me10.368… [1]

9.1.2 Bagging流程

Bagging算法的流程:
在这里插入图片描述

  • 另一形式:
    在这里插入图片描述
  1. 从原始样本集中有放回随机采样。共进行k轮抽取,得到k个训练集。(bootstrap的过程,由于是有放回抽样,所以k个训练集之间相互独立)
  2. 每次使用一份训练集训练一个模型,k 个训练集共得到 k 个基模型。(注:这里并没有具体的分类算法或回归方法,我们可以根据具体问题采用不同的分类或回归方法,如决策树、感知器等)
  3. 利用这k个基模型对测试集进行预测,将k个预测结果进行聚合。(aggregating的过程)
    1. 分类问题将上步得到的k个模型采用投票的方式得到分类结果
    2. 回归问题计算上述模型的均值作为最后的结果。(所有模型的重要性相同)

9.1.2 Bagging算法特点:

1、可并行的集成方法。每个基模型可以分别、独立、互不影响地生成。

2、主要降低 Variance,对 Bias 无明显作用。因此,适用于 High Variance & Low Bias 的模型。

  • 偏差角度:Bagging后的偏差与单个模型相近。
    由于 B i a s = 1 k ∑ i = 1 k b i a s i Bias=\frac{1}{k} \sum_{i=1}^{k}bias_{i} Bias=k1i=1kbiasi( 共k个基模型, b i a s i bias_{i} biasi为第 i i i个基模型的偏差),所以 Bagging后的偏差与单个模型相近。
  • 方差角度
  • 方差有两个重要的性质,如下:
    1、c为常数,则:
    Var ⁡ ( c X ) = E [ ( c X − E [ c X ] ) 2 ] = c 2 E [ ( X − E [ X ] ) 2 ] = c 2 Var ⁡ ( X ) \operatorname{Var}(c X)=E\left[(c X-E[c X])^{2}\right]=c^{2} E\left[(X-E[X])^{2}\right]=c^{2} \operatorname{Var}(X) Var(cX)=E[(cXE[cX])2]=c2E[(XE[X])2]=c2Var(X)
    2、独立随机变量之和的方差等于各变量的方差之和:
    Var ⁡ ( X 1 + ⋯ + X n ) = Var ⁡ ( X 1 ) + ⋯ + Var ⁡ ( X n ) \operatorname{Var}\left(X_{1}+\cdots+X_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right) Var(X1++Xn)=Var(X1)++Var(Xn)
    如果各模型独立,根据1,2可知,整体方差:
    Var ⁡ ( 1 n ∑ i = 1 n X i ) = 1 n 2 Var ⁡ ( ∑ i = 1 n X i ) = σ 2 n \operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{1}{n^{2}} \operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\frac{\sigma^{2}}{n} Var(n1i=1nXi)=n21Var(i=1nXi)=nσ2
    因此Bagging可以减少方差。

9.1.3 随机森林

随机森林(Random ForestBagging的一个拓展体,它的基学习器固定为决策树,多棵树也就组成了森林,而“随机”则在于选择划分属性的随机,随机森林在训练基学习器时,也采用有放回采样的方式添加样本扰动,同时它还引入了一种属性扰动,即在基决策树的训练过程中,在选择划分属性时,RF先从候选属性集中随机挑选出一个包含K个属性的子集,再从这个子集中选择最优划分属性,一般推荐K=log2(d)。

这样随机森林中基学习器的多样性不仅来自样本扰动,还来自属性扰动,从而进一步提升了基学习器之间的差异度。相比决策树的Bagging集成,随机森林的起始性能较差(由于属性扰动,基决策树的准确度有所下降),但随着基学习器数目的增多,随机森林往往会收敛到更低的泛化误差。同时不同于Bagging中决策树从所有属性集中选择最优划分属性,随机森林只在属性集的一个子集中选择划分属性,因此训练效率更高。

在这里插入图片描述

8.2 Bagging的例子

  • 案例来源: Amica的https://www.jianshu.com/p/c4bf8821af19集成方法-Bagging

  • 数据集来自UCI网站中乳腺癌数据:

    • 数据9个特征及因变量(诊断结果)
特征名称数值范围
Clump Thickness(肿块密度)1 - 10
Uniformity of Cell Size(细胞大小均匀性)1-10
Uniformity of Cell Shape(细胞形状均匀性)1-10
Marginal Adhesion(边界黏连)1-10
Single Epithelial Cell Size(单个上皮细胞大小)1-10
Bare Nuclei(裸核)1-10
Bland Chromatin(微受激染色质)1-10
Normal Nucleoli(正常核)1-10
Mitoses(有丝分裂)1-10
Class(诊断结果)2表示良性, 4表示恶性
import numpy as np
import pandas as pd
data = pd.read_excel(r'C:\Users\GJX\Desktop\Datawhale-学习\23期\集成学习\乳腺癌数据集.xlsx')
data.head()

在这里插入图片描述


data.shape
(699, 11)

data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 699 entries, 0 to 698
Data columns (total 11 columns):
id                             699 non-null int64
Clump Thickness                699 non-null int64
Uniformity of Cell Size        699 non-null int64
Uniformity of Cell Shape       699 non-null int64
Marginal Adhesion              699 non-null int64
Single Epithelial Cell Size    699 non-null int64
Bare Nuclei                    699 non-null object
Bland Chromatin                699 non-null int64
Normal Nucleoli                699 non-null int64
Mitoses                        699 non-null int64
Class                          699 non-null int64
dtypes: int64(10), object(1)
memory usage: 60.2+ KB

  • 可以看出除了ID外, 数据有699个样本和9个特征, 且其中Bare Nuclei (裸核)可能存在缺失值:
data['Bare Nuclei'].value_counts()
1     402
10    132
5      30
2      30
3      28
8      21
4      19
?      16
9       9
7       8
6       4
Name: Bare Nuclei, dtype: int64
  • 存在’?'的缺失值

data['Bare Nuclei'].replace('?',4, inplace=True)
data['Bare Nuclei'].value_counts()
1     402
10    132
4      35
5      30
2      30
3      28
8      21
9       9
7       8
6       4
Name: Bare Nuclei, dtype: int64
  • 使用平均值替代裸核的缺失值

  • 完成预处理后可利用决策树模型查看bagging的效果:
X=data.drop("Class",axis=1)
y=data.Class
#划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.4,  random_state=1)
#采用决策时模型作为基分类器,并采用熵作为指标对属性进行划分
tree = DecisionTreeClassifier(criterion='entropy', max_depth=None)#通过装袋集成方法生成500个决策树
bag = BaggingClassifier(base_estimator=tree,n_estimators=500,max_samples=1.0,max_features=1.0, bootstrap=True,bootstrap_features=False, n_jobs=1, random_state=1)
tree = tree.fit(X_train, y_train)
y_train_pred = tree.predict(X_train)
y_test_pred = tree.predict(X_test)
#准确
tree_train_accuracy = accuracy_score(y_train, y_train_pred)
tree_test_accuracy  = accuracy_score(y_test, y_test_pred)
#召回  恶性   或者说灵敏度
tree_train_sen = recall_score(y_train, y_train_pred,pos_label=4)
tree_test_sen  = recall_score(y_test, y_test_pred,pos_label=4)
#召回  良性  或者说特异性
tree_train_spe = recall_score(y_train, y_train_pred,pos_label=2)
tree_test_spe  = recall_score(y_test, y_test_pred,pos_label=2)
print('Decision tree train/test accuracies(准确率) %.3f/%.3f' % (tree_train_accuracy , tree_test_accuracy ))
print('Decision tree train/test sen(灵敏度) %.3f/%.3f' % (tree_train_sen, tree_test_sen ))
print('Decision tree train/test spe(特异性) %.3f/%.3f' % (tree_train_spe, tree_test_spe ))
Decision tree train/test accuracies(准确率) 1.000/0.954
Decision tree train/test sen(灵敏度) 1.000/0.925
Decision tree train/test spe(特异性) 1.000/0.968

  • bagging效果:
# 2、评估通过bagging集成的分类器性能#通过训练集训练多个决策树集成的模型
bag = bag.fit(X_train, y_train)
#运用bagging集成的模型预测训练集的类别
y_train_pred = bag.predict(X_train)
y_test_pred = bag.predict(X_test)#准确率
bag_train_accuracy = accuracy_score(y_train, y_train_pred)
bag_test_accuracy = accuracy_score(y_test, y_test_pred)#灵敏度
bag_train_sen = recall_score(y_train, y_train_pred,pos_label=4)
bag_test_sen  = recall_score(y_test, y_test_pred,pos_label=4)#特异性
bag_train_spe = recall_score(y_train, y_train_pred,pos_label=2)
bag_test_spe  = recall_score(y_test, y_test_pred,pos_label=2)#打印出集成模型在训练集和测试集上的准确率、灵敏度、特异性
print('Bagging train/test accuracies(准确率) %.3f/%.3f' % (bag_train_accuracy, bag_test_accuracy))
print('Bagging train/test sen(灵敏度) %.3f/%.3f' % (bag_train_sen, bag_test_sen ))
print('Bagging train/test spe(特异性) %.3f/%.3f' % (bag_train_spe, bag_test_spe ))

Bagging train/test accuracies(准确率) 1.000/0.964
Bagging train/test sen(灵敏度) 1.000/0.946
Bagging train/test spe(特异性) 1.000/0.973
  • 明显三个指标都提升

参考资料

  1. https://zhuanlan.zhihu.com/p/37730184 从0开始机器学习-Bagging和Boosting
  2. https://www.heywhale.com/mw/project/5e4fbed50e2b66002c1fa4ac西瓜书学习笔记(9)–集成学习
  3. https://www.jianshu.com/p/c4bf8821af19集成方法-Bagging

这篇关于20210414_24期_集成学习(中)_Task08_bagging的原理和案例分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/342154

相关文章

SpringBoot实现动态插拔的AOP的完整案例

《SpringBoot实现动态插拔的AOP的完整案例》在现代软件开发中,面向切面编程(AOP)是一种非常重要的技术,能够有效实现日志记录、安全控制、性能监控等横切关注点的分离,在传统的AOP实现中,切... 目录引言一、AOP 概述1.1 什么是 AOP1.2 AOP 的典型应用场景1.3 为什么需要动态插

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实