本文主要是介绍[转]数轴上的随机游走问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
数轴原点上有一个点,每步以1/2的概率向左或向右移动1个单位长度(下文称为一步随机游走),由此可以引出许多有趣的问题:
随机游走n步后距原点距离的期望
对这个问题可以分情况讨论:n为奇数或n为偶数。
当n为奇数时,设n=2k+1,k为非负整数,由于正反方向是对称的,下面考虑这个点坐标为正的情况:设点向正方向上走了n-i步,负方向上走了i步,i=0,1,2,...,k,则走法数显然为C(i,n)。这样所求期望值就等于
其中左边乘以2是考虑向反方向“对称”移动的情况,C(i,n)/2^n为这个点恰好“正方向上走了n-i步,负方向上走了i步”的概率,n-2i是这个点坐标的绝对值。
接下来就是一个简单的求值问题了:
当n为偶数时,设n=2k,k为非负整数,同理可以列出表达式:
和上面的表达式形式相同:i的取值同样是0,1,2,...,k,当i=k时出现了一点小不同:这个点仍然在原点,按道理不应该乘2,但此时n-2i=0,乘不乘2无所谓,于是就得到一样的式子。化简过程有些差别:
由此得到通项公式:
接下来,分析这个函数的数量级:先看右边这一部分
可以用Stirling公式换掉这里的阶乘(等价无穷大),结果为:
而k可以换为n/2。于是E_n的近似表达式:
或者用下面的式子表示:
由此可以得到,E_n大致与√n成正比。
很多人试着做“硬币随机抛掷实验”,却发现最后正面次数距总次数的1/2越来越远,其实这并不奇怪:随着抛掷次数n的增加,绝对误差就可以用上面的E_n衡量,显然是越来越大的,但是相对误差大致和n的-1/2次方成正比,随n增大而减小。所以正面次数除以总次数,得到的比值仍然是不断接近1/2的。
游走到原点左侧(猫捉老鼠问题)
若这个点从原点出发,随机游走无穷次,求这个点走到过-1点至少一次的概率(显然这与“走到原点左侧至少一次”是等价的)。或者形象一点:老鼠在-1点处不动,猫从原点随机游走,假设猫可以游走无穷次,若走到-1点老鼠就被捉,求猫捉到老鼠的概率。
显然,猫如果捉到老鼠,一定是在奇数步后第一次捉到。设第一次捉到老鼠时,猫走了2k+1步,则显然最后一步是从0走到-1,而前2k步是在原点右侧(包括原点)随机游走。这就是说,在每一步走完之后,向右的步数总大于向左的步数。如果按照先后顺序,向右走换为1,向左走换为0,就会得到一个长度为2k的01串,其中有k个0,k个1,到这里可以看出:这种01串的个数就是Catalan数!也就是说,如果串长为2k,则满足要求的串的个数为Catalan数
这样所求的概率就容易表示出来,它是一个无穷级数:
求出来它的值就行了。幸运的是,C_k有对应的生成函数:
于是有
令x=1,则此式的值就是所求的无穷级数的值,结果为1。也就是说,猫有100%的概率能抓到老鼠。乍一看有些反直觉,猫如果一直向右走,就抓不到老鼠;但是仔细一想就能发现:这跟在全体实数中随机选数道理一样,选到无理数的概率为1,并不代表不会选到有理数。猫抓到老鼠的概率为1,并不代表猫没有可能抓不到老鼠。
猫抓老鼠问题中游走步数的期望
上面已经证明,猫抓到老鼠的概率为1,一定有很多人也感兴趣猫抓到老鼠所用步数的期望。式子容易推出来,它仍然是一个无穷级数:
继续用生成函数的方法解决:
当x=1时,这个级数发散,可以认为级数的和为∞。也就是说,猫为了抓到老鼠,平均需要随机游走∞步。这无疑又是一个反直觉的结果。好可怜的喵~~~
这篇关于[转]数轴上的随机游走问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!