自动控制原理之根轨迹

2023-11-03 16:30

本文主要是介绍自动控制原理之根轨迹,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

根轨迹绘制的基本法则

法则1与2略

在这里插入图片描述

法则三:实轴上的根轨迹

在这里插入图片描述
相角条件要求所有在实轴上的根轨迹的点
相角值总和与-1的相角值相等
即为
在这里插入图片描述
对于任何传递函数的各项系数为实数的方程

  1. 其不在实轴上的零极点的分布必然关于实轴对称且两点相角值和为360°(2Π)
  2. 在实轴上的位于此点左边的点相角值为0°
  3. 在实轴上的此点右边的点
    若有2k个零极点,则零极点总数之差必为2a(a<k),则其相角值和仍是2aΠ
    若有2k+1个零极点,则零极点总数之差必为2a+1(a<k),则其相角值和为(2a+1)Π

则对于任一实轴上的点,只要其右边的零极点个数之和为奇数个,则其一定在更轨迹上

法则四:开环传函的极点个数比零点个数多2时,根之和为常数,即极点之和总是相等

此时若一部分根/极点左移,必有一部分根/极点右移,且移动的总量为0
在这里插入图片描述
此法则既可用来验证根轨迹,亦可用来绘制根轨迹(其他法则大部分同理)

圆形根轨迹的判定与绘制

在这里插入图片描述
由上述证明过程可知闭环传函的闭环特征方程
等于开环传函的分子(乘以开环增益)加分母

在这里插入图片描述
当开环传函的分子分母中的任意一个是
关于s的一元二次方程时
例如
在这里插入图片描述
若s的解的形式是
一个

  • 实部加虚部=α+jw
  • 实部到某点的差的二次方的和与虚部的二次方的和为常数
    (可以将实部中的根轨迹增益K用含α的式子表示,后将w中的根轨迹增益K换成含α的式子,整合公示以后判断其是否为圆形表达的公式)
    例如
    在这里插入图片描述
    以上过程证明根轨迹,即s的值是许多个到此常数距离恒定的点所组成的一条曲线,即一个圆
    在这里插入图片描述
    由此得到根轨迹圆弧定理
    在这里插入图片描述

根据以上两大法则和圆的根轨迹的定理
判断根轨迹的绘制
先根据法则三判断实轴上的根轨迹
若此时有极点未直接与零点或负无穷相连
则存在圆的根轨迹(通过园的根轨迹连接实轴根轨迹来构成完整的根轨迹)
例如
在这里插入图片描述

在这里插入图片描述

法则五:一个距离所有零极点无穷远的在根轨迹上的点,在近似的条件下,根轨迹上的这个点到所有零极点的情况可近似看做 词典到这些零极点的质心的情况

(例如在宇宙上无穷远处看地球的任意一点,距离和角度都可近似地认为是再看宇宙的质心)
此时这个点仍然满足

  1. 其相角条件同样需要满足与-1相等,即(2k+1)Π
  2. 其长度条件满足到质心与到零极点的距离近似相等
    由相角条件可知
    在这里插入图片描述
    在这里插入图片描述
    由长度条件可知,若这个点同时在许多条根轨迹上时(即此点是许多条根轨迹的交点)
    在这里插入图片描述

在这里插入图片描述
又根轨迹肯定是对称的,可知当这个点足够远时,无论虚轴上的尺度如何大,实轴上的单位总是会接近于σ


由上面的推导过程可知根轨迹上的点一定近似满足以下两个条件
以对应的角度φ
在某一分离点分开并指向无穷远处
并在虚轴上无限增大,实轴上无限接近于σ
(真正的根轨迹在无穷远处时与渐近线几乎重合,在近处时则根据计算会用较大偏差但轨迹的走向与趋势一致)
在这里插入图片描述


做题绘制根轨迹时
在上述条件下,同时注意根之和满足的某些趋势,绘制这样的“渐近线”
例如
在这里插入图片描述
由根之和可知,在根轨迹增益增大的过程中,从极点-4出发的根轨迹单调向右运动,那么在根之和不变的情况下

  1. -1与0之间的分离点因该更加靠近-1
  2. 右边的根轨迹在对称运动到实数部分为-1时,左边应刚好运动到-3
  3. 右边的根轨迹在分离之后应单调向左运动,无限接近但永远不等于-3/2

上图根轨迹不符合法则四根之和,错误
在这里插入图片描述
同上,错误
在这里插入图片描述
正确

法则六:根轨迹上的任一点满足特征方程为零,而根轨迹的交点则是同时满足特征方程本身为零的条件下其对应的导数为零(即特征方程的重根)

例如
在这里插入图片描述
经由一下数学推导可知
在这里插入图片描述
在这里插入图片描述
做题时
要么直接依靠计算机输入方程求得分离点
要么没有计算机就直接“试根”
在这里插入图片描述

法则七:根轨迹与虚轴的交点

  1. 通过劳斯判据劳斯表得知的临稳状态时的根轨迹增益,列出劳斯表中对应行的特征部分组成式来求得此时的特征值在这里插入图片描述
  2. 直接设s=wj,带入原特征方程中求解
    在这里插入图片描述

法则八:相角条件

在这里插入图片描述

这篇关于自动控制原理之根轨迹的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/339440

相关文章

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

JAVA封装多线程实现的方式及原理

《JAVA封装多线程实现的方式及原理》:本文主要介绍Java中封装多线程的原理和常见方式,通过封装可以简化多线程的使用,提高安全性,并增强代码的可维护性和可扩展性,需要的朋友可以参考下... 目录前言一、封装的目标二、常见的封装方式及原理总结前言在 Java 中,封装多线程的原理主要围绕着将多线程相关的操

kotlin中的模块化结构组件及工作原理

《kotlin中的模块化结构组件及工作原理》本文介绍了Kotlin中模块化结构组件,包括ViewModel、LiveData、Room和Navigation的工作原理和基础使用,本文通过实例代码给大家... 目录ViewModel 工作原理LiveData 工作原理Room 工作原理Navigation 工

Java的volatile和sychronized底层实现原理解析

《Java的volatile和sychronized底层实现原理解析》文章详细介绍了Java中的synchronized和volatile关键字的底层实现原理,包括字节码层面、JVM层面的实现细节,以... 目录1. 概览2. Synchronized2.1 字节码层面2.2 JVM层面2.2.1 ente

MySQL的隐式锁(Implicit Lock)原理实现

《MySQL的隐式锁(ImplicitLock)原理实现》MySQL的InnoDB存储引擎中隐式锁是一种自动管理的锁,用于保证事务在行级别操作时的数据一致性和安全性,本文主要介绍了MySQL的隐式锁... 目录1. 背景:什么是隐式锁?2. 隐式锁的工作原理3. 隐式锁的类型4. 隐式锁的实现与源代码分析4

MySQL中Next-Key Lock底层原理实现

《MySQL中Next-KeyLock底层原理实现》Next-KeyLock是MySQLInnoDB存储引擎中的一种锁机制,结合记录锁和间隙锁,用于高效并发控制并避免幻读,本文主要介绍了MySQL中... 目录一、Next-Key Lock 的定义与作用二、底层原理三、源代码解析四、总结Next-Key L

Spring Cloud Hystrix原理与注意事项小结

《SpringCloudHystrix原理与注意事项小结》本文介绍了Hystrix的基本概念、工作原理以及其在实际开发中的应用方式,通过对Hystrix的深入学习,开发者可以在分布式系统中实现精细... 目录一、Spring Cloud Hystrix概述和设计目标(一)Spring Cloud Hystr

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制