Pytroch_Sequential使用、损失函数、反向传播和优化器

2023-11-03 13:52

本文主要是介绍Pytroch_Sequential使用、损失函数、反向传播和优化器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pytroch_Sequential使用、损失函数、反向传播和优化器

文章目录

    • nn.Sequential
    • 搭建小实战
    • 损失函数与反向传播
    • 优化器

nn.Sequential

nn.Sequential是一个有序的容器,用于搭建神经网络的模块被按照被传入构造器的顺序添加到nn.Sequential()容器中。

在这里插入图片描述

在这里插入图片描述

import torch.nn  as nn
from collections import OrderedDict
# Using Sequential to create a small model. When `model` is run,
# input will first be passed to `Conv2d(1,20,5)`. The output of
# `Conv2d(1,20,5)` will be used as the input to the first
# `ReLU`; the output of the first `ReLU` will become the input
# for `Conv2d(20,64,5)`. Finally, the output of
# `Conv2d(20,64,5)` will be used as input to the second `ReLU`
model = nn.Sequential(nn.Conv2d(1,20,5),nn.ReLU(),nn.Conv2d(20,64,5),nn.ReLU())# Using Sequential with OrderedDict. This is functionally the
# same as the above code
model = nn.Sequential(OrderedDict([('conv1', nn.Conv2d(1,20,5)),('relu1', nn.ReLU()),('conv2', nn.Conv2d(20,64,5)),('relu2', nn.ReLU())]))
print(model)
Sequential((conv1): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))(relu1): ReLU()(conv2): Conv2d(20, 64, kernel_size=(5, 5), stride=(1, 1))(relu2): ReLU()
)

搭建小实战

还是以 C I F A R − 10 m o d e l CIFAR-10 model CIFAR10model为例

在这里插入图片描述

  1. 输入图像是3通道的32×32的
  2. 先后经过卷积层(5×5的卷积核)
  3. 最大池化层(2×2的池化核)
  4. 卷积层(5×5的卷积核)
  5. 最大池化层(2×2的池化核)
  6. 卷积层(5×5的卷积核)
  7. 最大池化层(2×2的池化核)
  8. 拉直(flatten)
  9. 全连接层的处理,
  10. 最后输出的大小为10

基于以上的介绍,后续将利用Pytorch构建模型,实现 C I F A R − 10 m o d e l s t r u c t u r e CIFAR-10 \quad model \quad structure CIFAR10modelstructure

参数说明:in_channels: int、out_channels: int,kernel_size: Union由input、特征图以及卷积核即可看出,而stride、padding需要通过公式计算得到。

特得到的具体的特征图尺寸的计算公式如下:
在这里插入图片描述

inputs : 3@32x32,3通道32x32的图片,5*5的kernel --> 特征图(Feature maps) : 32@32x32

即经过32个3@5x5的卷积层,输出尺寸没有变化(有x个卷积核即由x个卷积核,卷积核的通道数与输入的通道数相等)

由上述的计算公式来计算出 s t r i d e stride stride p a d d i n g padding padding

在这里插入图片描述

卷积层中的stride默认为1

池化层中的stride默认为kernel_size的大小

import torch
import torch.nn as nn
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
class BS(nn.Module):def __init__(self):super().__init__()self.conv1 = nn.Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2)  #stride和padding计算得到self.maxpool1 = nn.MaxPool2d(kernel_size=2)self.conv2 = nn.Conv2d(in_channels=32,out_channels=32,kernel_size=5,stride=1,padding=2)self.maxpool2 = nn.MaxPool2d(kernel_size=2)self.conv3 = nn.Conv2d(in_channels=32,out_channels=64,kernel_size=5,padding=2)self.maxpool3 = nn.MaxPool2d(kernel_size=2)self.flatten = nn.Flatten()  #变为63*4*4=1024self.linear1 = nn.Linear(in_features=1024, out_features=64)self.linear2 = nn.Linear(in_features=64, out_features=10)def forward(self,x):x = self.conv1(x)x = self.maxpool1(x)x = self.conv2(x)x = self.maxpool2(x)x = self.conv3(x)x = self.maxpool3(x)x = self.flatten(x)x = self.linear1(x)x = self.linear2(x)return xbs = BS()
bs
BS((conv1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(maxpool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(maxpool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(maxpool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(flatten): Flatten(start_dim=1, end_dim=-1)(linear1): Linear(in_features=1024, out_features=64, bias=True)(linear2): Linear(in_features=64, out_features=10, bias=True)
)

利用Sequential优化代码,并在tensorboard显示

.add_graph函数用于将PyTorch模型图添加到TensorBoard中。通过这个函数,您可以以可视化的方式展示模型的计算图,使其他人更容易理解您的模型结构和工作流程。

add_graph(model, input_to_model, strip_default_attributes=True)
  • model:要添加的PyTorch模型。
  • input_to_model:用于生成模型图的输入数据。
  • strip_default_attributes:是否删除模型中的默认属性,默认为True。
class BS(nn.Module):def __init__(self):super().__init__()self.model = nn.Sequential(nn.Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2),  #stride和padding计算得到nn.MaxPool2d(kernel_size=2),nn.Conv2d(in_channels=32,out_channels=32,kernel_size=5,stride=1,padding=2),nn.MaxPool2d(kernel_size=2),nn.Conv2d(in_channels=32,out_channels=64,kernel_size=5,padding=2),nn.MaxPool2d(kernel_size=2),nn.Flatten(),  #变为64*4*4=1024nn.Linear(in_features=1024, out_features=64),nn.Linear(in_features=64, out_features=10),)def forward(self,x):x = self.model(x)return xbs = BS()
print(bs)
BS((model): Sequential((0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(6): Flatten(start_dim=1, end_dim=-1)(7): Linear(in_features=1024, out_features=64, bias=True)(8): Linear(in_features=64, out_features=10, bias=True))
)
# 在tensorboard中显示
input_ = torch.ones((64,3,32,32))
writer = SummaryWriter(".logs")
writer.add_graph(bs, input_)  # 定义的模型,数据
writer.close()

利用tensorboard可视化网络结构graph如下
在这里插入图片描述

损失函数与反向传播

计算模型目标输出和实际输出之间的误差。并通过反向传播算法更新模型的权重和参数,以减小预测输出和实际输出之间的误差。

  • 计算实际输出和目标输出之间的差距
  • 为更新输出提供一定依据(反向传播)

不同的模型用的损失函数一般也不一样。
在这里插入图片描述

平均绝对误差MAE Mean Absolute Error

torch.nn.L1Loss(size_average=None, reduce=None, reduction=‘mean’)

在这里插入图片描述

import torch
import torch.nn as nn
# 实例化
criterion1 = nn.L1Loss(reduction='mean')#mean
criterion2 = nn.L1Loss(reduction="sum")#sum
output = torch.tensor([1.0, 2.0, 3.0])#或dtype=torch.float32
target = torch.tensor([2.0, 2.0, 2.0])#或dtype=torch.float32
# 平均值损失值
loss = criterion1(output, target)
print(loss)  # 输出:tensor(0.6667)
# 误差和
loss1 = criterion2(output,target)
print(loss1) # tensor(2.)
tensor(0.6667)
tensor(2.)
loss = nn.L1Loss()
input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5)
output = loss(input, target)
output.backward()
output
tensor(1.0721, grad_fn=<MeanBackward0>)

均方误差MSE Mean-Square Error
在这里插入图片描述

torch.nn.MSELoss(size_average=None, reduce=None, reduction=‘mean’)

在这里插入图片描述

import torch.nn as nn
# 实例化
criterion1 = nn.MSELoss(reduction='mean')
criterion2 = nn.MSELoss(reduction="sum")
output = torch.tensor([1, 2, 3],dtype=torch.float32)
target = torch.tensor([1, 2, 5],dtype=torch.float32)
# 平均值损失值
loss = criterion1(output, target)
print(loss)  # 输出:tensor(1.3333)
# 误差和
loss1 = criterion2(output,target)
print(loss1) # tensor(4.)
tensor(1.3333)
tensor(4.)

交叉熵损失 CrossEntropyLoss

torch.nn.CrossEntropyLoss(weight=None,size_average=None,ignore_index=-100,reduce=None,reduction='mean',label_smoothing=0.0)

当你有一个不平衡的训练集时,这是特别有用的
在这里插入图片描述

import torch
import torch.nn as nn# 设置三分类问题,假设是人的概率是0.1,狗的概率是0.2,猫的概率是0.3
x = torch.tensor([0.1, 0.2, 0.3])
print(x)
y = torch.tensor([1]) # 设目标标签为1,即0.2狗对应的标签,目标标签张量y
x = torch.reshape(x, (1, 3))  # tensor([[0.1000, 0.2000, 0.3000]]),批次大小为1,分类数3,即为3分类
print(x)
print(y)
# 实例化对象
loss_cross = nn.CrossEntropyLoss()
# 计算结果
result_cross = loss_cross(x, y)
print(result_cross)
tensor([0.1000, 0.2000, 0.3000])
tensor([[0.1000, 0.2000, 0.3000]])
tensor([1])
tensor(1.1019)
import torch
import torchvision
from torch.utils.data import DataLoader# 准备数据集
dataset = torchvision.datasets.CIFAR10(root="dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
# 数据集加载器
dataloader = DataLoader(dataset, batch_size=1)
"""
输入图像是3通道的32×32的,
先后经过卷积层(5×5的卷积核)、
最大池化层(2×2的池化核)、
卷积层(5×5的卷积核)、
最大池化层(2×2的池化核)、
卷积层(5×5的卷积核)、
最大池化层(2×2的池化核)、
拉直、
全连接层的处理,
最后输出的大小为10
"""# 搭建神经网络
class BS(nn.Module):def __init__(self):super().__init__()self.model = nn.Sequential(nn.Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2),  #stride和padding计算得到nn.MaxPool2d(kernel_size=2),nn.Conv2d(in_channels=32,out_channels=32,kernel_size=5,stride=1,padding=2),nn.MaxPool2d(kernel_size=2),nn.Conv2d(in_channels=32,out_channels=64,kernel_size=5,padding=2),nn.MaxPool2d(kernel_size=2),nn.Flatten(),  #变为64*4*4=1024nn.Linear(in_features=1024, out_features=64),nn.Linear(in_features=64, out_features=10),)def forward(self, x):x = self.model(x)return x# 实例化
bs = BS()
loss = torch.nn.CrossEntropyLoss()
# 对每一张图片进行CrossEntropyLoss损失函数计算
# 使用损失函数loss计算预测结果和目标标签之间的交叉熵损失for inputs,labels in dataloader:outputs = bs(inputs)result = loss(outputs,labels)print(result)
tensor(2.3497, grad_fn=<NllLossBackward0>)
tensor(2.2470, grad_fn=<NllLossBackward0>)
tensor(2.2408, grad_fn=<NllLossBackward0>)
tensor(2.2437, grad_fn=<NllLossBackward0>)
tensor(2.3121, grad_fn=<NllLossBackward0>)
........

优化器

优化器(Optimizer)是用于更新神经网络参数的工具

它根据计算得到的损失函数的梯度来调整模型的参数,以最小化损失函数并改善模型的性能

在这里插入图片描述
常见的优化器包括:SGD、Adam

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

model.parameters()用于获取模型的可学习参数

learning rate,lr表示学习率,即每次参数更新的步长

在每个训练批次中,需要执行以下操作:

  1. 输入训练数据到模型中,进行前向传播

  2. 根据损失函数计算损失

  3. 调用优化器的zero_grad()方法清零之前的梯度

  4. 调用backward()方法进行反向传播,计算梯度

  5. 调用优化器的step()方法更新模型参数

伪代码如下(运行不了的)

import torch
import torch.optim as optim# Step 1: 定义模型
model = ...
# Step 2: 定义优化器
optimizer = optim.SGD(model.parameters(), lr=0.01)
# Step 3: 定义损失函数
criterion = ...
# Step 4: 训练循环
for inputs, labels in dataloader:# 前向传播outputs = model(inputs)# 计算损失loss = criterion(outputs, labels)# 清零梯度optimizer.zero_grad()# 反向传播,得到梯度loss.backward()# 更新参数,根据梯度就行优化optimizer.step()

在上述模型代码中,SGD作为优化器,lr为0.01。同时根据具体任务选择适合的损失函数,例如torch.nn.CrossEntropyLoss、torch.nn.MSELoss等,以CIFRA10为例

import torch
import torch.optim as optim
import torchvision
from torch.utils.data import DataLoaderdataset = torchvision.datasets.CIFAR10(root="dataset", train=False, transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=1)
class BS(nn.Module):def __init__(self):super().__init__()self.model = nn.Sequential(nn.Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2),  #stride和padding计算得到nn.MaxPool2d(kernel_size=2),nn.Conv2d(in_channels=32,out_channels=32,kernel_size=5,stride=1,padding=2),nn.MaxPool2d(kernel_size=2),nn.Conv2d(in_channels=32,out_channels=64,kernel_size=5,padding=2),nn.MaxPool2d(kernel_size=2),nn.Flatten(),  #变为64*4*4=1024nn.Linear(in_features=1024, out_features=64),nn.Linear(in_features=64, out_features=10),)def forward(self, x):x = self.model(x)return xmodel = BS()  #定义model
optimizer = optim.SGD(model.parameters(), lr=0.01)  #定义优化器SGD
criterion = nn.CrossEntropyLoss()  #定义损失函数,交叉熵损失函数'''循环一次,只对数据就行了一轮的学习'''
for inputs, labels in dataloader:# 前向传播outputs = model(inputs)# 计算损失loss = criterion(outputs, labels)# 清零梯度optimizer.zero_grad()# 反向传播loss.backward()# 更新参数optimizer.step()# 打印经过优化器后的结果print(loss)"""训练循环20次"""
# for epoch in range(20):
#     running_loss = 0.0
#     for inputs, labels in dataloader:
#         # 前向传播
#         outputs = model(inputs)
#         # 计算损失
#         loss = criterion(outputs,labels)
#         # 清零梯度
#         optimizer.zero_grad()
#         # 反向传播
#         loss.backward()
#         # 更新参数
#         optimizer.step()
#         # 打印经过优化器后的结果
#         running_loss = running_loss + loss
#     print(running_loss)
Files already downloaded and verified
tensor(2.3942, grad_fn=<NllLossBackward0>)
tensor(2.2891, grad_fn=<NllLossBackward0>)
tensor(2.2345, grad_fn=<NllLossBackward0>)
tensor(2.2888, grad_fn=<NllLossBackward0>)
tensor(2.2786, grad_fn=<NllLossBackward0>)
........

在这里插入图片描述

这篇关于Pytroch_Sequential使用、损失函数、反向传播和优化器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/338627

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud