tensorflow版本Faster R-CNN环境搭建和运行(代码、数据、模型齐全)

本文主要是介绍tensorflow版本Faster R-CNN环境搭建和运行(代码、数据、模型齐全),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近在做物体检测,想在自己电脑上跑一下Faster RCNN,从搭建环境到改代码再到出结果,过程真的踩过太多太多的坑了,要哭惹~~~
看多了Error,都快忘记Successful长啥样了…还好我没放弃,今天终于跑通了,从网上找了几张图片demo了一下。

下面从头到尾顺一下过程,致敬这些天踩过的坑。

1、环境搭建

首先说一下Faster rcnn有cpu和gpu两种版本,如果你没有gpu服务器或者只是想在自己电脑上复现一下代码那就用cpu版本。可以在windows和linux两种系统里运行。
一开始我是在window10系统里跑程序,环境代码都改好了,但最后编译总是出问题,于是转战虚拟机Ubuntu系统。

  • 虚拟机VMware Workstation 链接(下载下来里面有秘钥,我的电脑这个版本打不开,更新后使用的非商业版本,也还可以)
  • Ubuntu 16.4 链接
  • tensorflow=1.8(开始用的2.XX版本,后期遇到错误降低版本后运行成功)
  • ubuntu自带python,不需要安装
  • anaconda3 4.2.0版本默认有python 官网下载就可以(看了很多大佬说faster rcnn在3.5版本下运行,所以一直用的3.5,没尝试别的版本)
  • 其余安装包cython、easydict、opencv-python自行用pip安装就好
  • faster RCNN 源码准备好 链接:https://pan.baidu.com/s/1XhXQDBZOZf9TmvGrQxTeIQ 提取码:ow21
  • 训练模型准备好 链接:链接:https://pan.baidu.com/s/1moQZrGjH561AEIfMquEhhA 提取码:a6s3
  • coco数据集准备好 链接:链接:https://pan.baidu.com/s/1aKsTG5zAPFqEkmfWfsdMGg 提取码:iq7y

2、安装

1.关于虚拟机和Ubuntu系统的安装可以参考这个链接,博主写的挺详细的:https://blog.csdn.net/katrina_ali/article/details/79177288

2.anaconda3-4.2.0安装

  • 从官网下载下来安装包后放到虚拟机里,键入下面命令
bash Anaconda3-4.2.0-Linux-x86_64.sh
  • 一路enter,默认yes,最后问是否加入PATH,默认no就行,安装完成手动加入就好。
  • 为配置文件bashrc加入anaconda路径
    vi ~/.bashrc
  • 在最后加入下方第一行代码,‘:wq’保存
  export PATH="/home/anmeng/anaconda3/bin:$PATH"(注意是你anaconda3所在的路径)
  • 输入source命令使配置生效,重启终端就OK了
  source ~/.bashrc

3.创建虚拟环境

  • 创建一个python3.5版本的虚拟环境,在该环境里安装需要的依赖包
conda create -n tensorflow python=3.5
  • 在这里我踩过一个大坑,就是怎么都创建不了,出现CondaHTTPError错误,如果遇到这个错误首先检查自己的网络是否链接好,用命令行将链接换成清华的镜像链接(该命令自动将.condarc中的镜像换成清华镜像)
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes
  • 这样基本能创建成功了。不过还有人反应问题还是解决不了,我从网上、论坛看到有人分享经验,说进入.condarc配置文件将defaults删掉就可以,大家试一下,还有人说链接还是不行的话可以将https改正http试一下(我是删掉defaults就创建成功了)

  • 输入下方命令查看创建的环境、激活环境

conda env list
activate tensorflow
  • 在该环境中导入tensorflow、cython、easydict等安装包,默认的tensorflow是从外网下载,速度很慢,可以用国内镜像代替,tensorflow的安装、卸载以及遇到的问题可以参考这个博文:https://blog.csdn.net/weixin_43981560/article/details/104680233
pip install  tensorflow
  • 如果很多依赖包版本不同,那就强制安装tensorflow
pip install --ignore-installed --upgrade tensorflow
  • 安装其他依赖包(如果pip版本低就升级,按照提示要求来)
pip install cython 
pip install python-opencv 
pip install easydict
  • 环境到这儿基本就配好了,接下来开始改代码

3、代码

  • lib/model/config.py将GPU禁用
    在这里插入图片描述
  • lib/model/nms_wrapper.py将下面两行注释掉
    在这里插入图片描述
  • setup.py文件中将下面两行还有标注的代码注释掉,
CUDA=locate_cuda()
self.set_executable('compile_so',CUDA['nvcc'])

在这里插入图片描述

  • 改完代码进到lib文件下进行编译(前提装好cython文件)
make clean
make
  • 回到tf-faster-rcnn-master目录底下,将下载的cocoapi-master数据集和预训练模型voc_2007_trainval+voc_2012_trainval放到data目录下
cd cocoapi-master/PythonAPI
make
  • 建立预训练模型的软连接
NET=res101
TRAIN_IMDB=voc_2007_trainval+voc_2012_trainval
mkdir -p output/${NET}/${TRAIN_IMDB}
cd output/${NET}/${TRAIN_IMDB}
ln -s ../../../data/voc_2007_trainval+voc_2012_trainval ./default
cd ../../..
  • 这时文件夹里会出现四个模型。就要成功了!!!!

  • 继续下面两行命令,对data里的五张图片进行测试(没出问题的到这应该就可以了,有问题的继续看下面的坑)

GPU_ID=0
CUDA_VISIBLE_DEVICES=${GPU_ID} ./tools/demo.py
  • 我在做这一步又遇到了一个大坑!出现了下面三个Error!提示什么libnvinfer.so.6等好几个包找不到模型找不到。。。到这最后一步我真的快要崩溃了
1、ImportError: libnvinfer.so.6: cannot open shared object file: No such file or directory
2、Cannot dlopen some TensorRT libraries.if you would like to use Nvidia GPU with TensorRT,please make sure the missing libraries mentioned above are installed properly.
3、undefined symbol: _Py_ZeroStruct
  • 查了好多资料,很多人说是用tensorrt,于是去官网下载下来,链接(比较麻烦、要注册认证,还有我原本下载的7.XX版本,奈何最后还是不行提示需要6.XX版本,所以最好下载6.XX版本)

  • 解压完,添加路径,再source一下

vi ~/.bashrc
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/anmeng/desktop/TensorRT-6.0.1.8/lib
source ~/.bashrc
  • 最后的最后如果还出错,看看是不是tensorrtflow版本高了,可以降低一下版本
    在这里插入图片描述

  • 好了,到这几乎所有的坑都踩过了,该successful了
    在这里插入图片描述

  • 现在结果出来了,但看到上图有Warning,提示超出内存,所以还是在perfect一下更好~~~

  • 很简单,去config.py里把batch_size改小一点就可以

__C.TRAIN.BATCH_SIZE = 64
__C.TRAIN.RPN_BATCHSIZE = 128
  • 最后上图,perfect~~~
    在这里插入图片描述在这里插入图片描述参考链接:
    https://blog.csdn.net/char_QwQ/article/details/80980505?utm_source=blogxgwz0
    https://blog.csdn.net/sinat_33486980/article/details/81045315

好啦,完整的Faster RCNN运行出来了,过几天再出一个跑自己数据哒博文~

这篇关于tensorflow版本Faster R-CNN环境搭建和运行(代码、数据、模型齐全)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/338391

相关文章

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Ubuntu如何升级Python版本

《Ubuntu如何升级Python版本》Ubuntu22.04Docker中,安装Python3.11后,使用update-alternatives设置为默认版本,最后用python3-V验证... 目China编程录问题描述前提环境解决方法总结问题描述Ubuntu22.04系统自带python3.10,想升级

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

Linux搭建ftp服务器的步骤

《Linux搭建ftp服务器的步骤》本文给大家分享Linux搭建ftp服务器的步骤,本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录ftp搭建1:下载vsftpd工具2:下载客户端工具3:进入配置文件目录vsftpd.conf配置文件4: