tensorflow版本Faster R-CNN环境搭建和运行(代码、数据、模型齐全)

本文主要是介绍tensorflow版本Faster R-CNN环境搭建和运行(代码、数据、模型齐全),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近在做物体检测,想在自己电脑上跑一下Faster RCNN,从搭建环境到改代码再到出结果,过程真的踩过太多太多的坑了,要哭惹~~~
看多了Error,都快忘记Successful长啥样了…还好我没放弃,今天终于跑通了,从网上找了几张图片demo了一下。

下面从头到尾顺一下过程,致敬这些天踩过的坑。

1、环境搭建

首先说一下Faster rcnn有cpu和gpu两种版本,如果你没有gpu服务器或者只是想在自己电脑上复现一下代码那就用cpu版本。可以在windows和linux两种系统里运行。
一开始我是在window10系统里跑程序,环境代码都改好了,但最后编译总是出问题,于是转战虚拟机Ubuntu系统。

  • 虚拟机VMware Workstation 链接(下载下来里面有秘钥,我的电脑这个版本打不开,更新后使用的非商业版本,也还可以)
  • Ubuntu 16.4 链接
  • tensorflow=1.8(开始用的2.XX版本,后期遇到错误降低版本后运行成功)
  • ubuntu自带python,不需要安装
  • anaconda3 4.2.0版本默认有python 官网下载就可以(看了很多大佬说faster rcnn在3.5版本下运行,所以一直用的3.5,没尝试别的版本)
  • 其余安装包cython、easydict、opencv-python自行用pip安装就好
  • faster RCNN 源码准备好 链接:https://pan.baidu.com/s/1XhXQDBZOZf9TmvGrQxTeIQ 提取码:ow21
  • 训练模型准备好 链接:链接:https://pan.baidu.com/s/1moQZrGjH561AEIfMquEhhA 提取码:a6s3
  • coco数据集准备好 链接:链接:https://pan.baidu.com/s/1aKsTG5zAPFqEkmfWfsdMGg 提取码:iq7y

2、安装

1.关于虚拟机和Ubuntu系统的安装可以参考这个链接,博主写的挺详细的:https://blog.csdn.net/katrina_ali/article/details/79177288

2.anaconda3-4.2.0安装

  • 从官网下载下来安装包后放到虚拟机里,键入下面命令
bash Anaconda3-4.2.0-Linux-x86_64.sh
  • 一路enter,默认yes,最后问是否加入PATH,默认no就行,安装完成手动加入就好。
  • 为配置文件bashrc加入anaconda路径
    vi ~/.bashrc
  • 在最后加入下方第一行代码,‘:wq’保存
  export PATH="/home/anmeng/anaconda3/bin:$PATH"(注意是你anaconda3所在的路径)
  • 输入source命令使配置生效,重启终端就OK了
  source ~/.bashrc

3.创建虚拟环境

  • 创建一个python3.5版本的虚拟环境,在该环境里安装需要的依赖包
conda create -n tensorflow python=3.5
  • 在这里我踩过一个大坑,就是怎么都创建不了,出现CondaHTTPError错误,如果遇到这个错误首先检查自己的网络是否链接好,用命令行将链接换成清华的镜像链接(该命令自动将.condarc中的镜像换成清华镜像)
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes
  • 这样基本能创建成功了。不过还有人反应问题还是解决不了,我从网上、论坛看到有人分享经验,说进入.condarc配置文件将defaults删掉就可以,大家试一下,还有人说链接还是不行的话可以将https改正http试一下(我是删掉defaults就创建成功了)

  • 输入下方命令查看创建的环境、激活环境

conda env list
activate tensorflow
  • 在该环境中导入tensorflow、cython、easydict等安装包,默认的tensorflow是从外网下载,速度很慢,可以用国内镜像代替,tensorflow的安装、卸载以及遇到的问题可以参考这个博文:https://blog.csdn.net/weixin_43981560/article/details/104680233
pip install  tensorflow
  • 如果很多依赖包版本不同,那就强制安装tensorflow
pip install --ignore-installed --upgrade tensorflow
  • 安装其他依赖包(如果pip版本低就升级,按照提示要求来)
pip install cython 
pip install python-opencv 
pip install easydict
  • 环境到这儿基本就配好了,接下来开始改代码

3、代码

  • lib/model/config.py将GPU禁用
    在这里插入图片描述
  • lib/model/nms_wrapper.py将下面两行注释掉
    在这里插入图片描述
  • setup.py文件中将下面两行还有标注的代码注释掉,
CUDA=locate_cuda()
self.set_executable('compile_so',CUDA['nvcc'])

在这里插入图片描述

  • 改完代码进到lib文件下进行编译(前提装好cython文件)
make clean
make
  • 回到tf-faster-rcnn-master目录底下,将下载的cocoapi-master数据集和预训练模型voc_2007_trainval+voc_2012_trainval放到data目录下
cd cocoapi-master/PythonAPI
make
  • 建立预训练模型的软连接
NET=res101
TRAIN_IMDB=voc_2007_trainval+voc_2012_trainval
mkdir -p output/${NET}/${TRAIN_IMDB}
cd output/${NET}/${TRAIN_IMDB}
ln -s ../../../data/voc_2007_trainval+voc_2012_trainval ./default
cd ../../..
  • 这时文件夹里会出现四个模型。就要成功了!!!!

  • 继续下面两行命令,对data里的五张图片进行测试(没出问题的到这应该就可以了,有问题的继续看下面的坑)

GPU_ID=0
CUDA_VISIBLE_DEVICES=${GPU_ID} ./tools/demo.py
  • 我在做这一步又遇到了一个大坑!出现了下面三个Error!提示什么libnvinfer.so.6等好几个包找不到模型找不到。。。到这最后一步我真的快要崩溃了
1、ImportError: libnvinfer.so.6: cannot open shared object file: No such file or directory
2、Cannot dlopen some TensorRT libraries.if you would like to use Nvidia GPU with TensorRT,please make sure the missing libraries mentioned above are installed properly.
3、undefined symbol: _Py_ZeroStruct
  • 查了好多资料,很多人说是用tensorrt,于是去官网下载下来,链接(比较麻烦、要注册认证,还有我原本下载的7.XX版本,奈何最后还是不行提示需要6.XX版本,所以最好下载6.XX版本)

  • 解压完,添加路径,再source一下

vi ~/.bashrc
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/anmeng/desktop/TensorRT-6.0.1.8/lib
source ~/.bashrc
  • 最后的最后如果还出错,看看是不是tensorrtflow版本高了,可以降低一下版本
    在这里插入图片描述

  • 好了,到这几乎所有的坑都踩过了,该successful了
    在这里插入图片描述

  • 现在结果出来了,但看到上图有Warning,提示超出内存,所以还是在perfect一下更好~~~

  • 很简单,去config.py里把batch_size改小一点就可以

__C.TRAIN.BATCH_SIZE = 64
__C.TRAIN.RPN_BATCHSIZE = 128
  • 最后上图,perfect~~~
    在这里插入图片描述在这里插入图片描述参考链接:
    https://blog.csdn.net/char_QwQ/article/details/80980505?utm_source=blogxgwz0
    https://blog.csdn.net/sinat_33486980/article/details/81045315

好啦,完整的Faster RCNN运行出来了,过几天再出一个跑自己数据哒博文~

这篇关于tensorflow版本Faster R-CNN环境搭建和运行(代码、数据、模型齐全)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/338391

相关文章

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

MySQL中删除重复数据SQL的三种写法

《MySQL中删除重复数据SQL的三种写法》:本文主要介绍MySQL中删除重复数据SQL的三种写法,文中通过代码示例讲解的非常详细,对大家的学习或工作有一定的帮助,需要的朋友可以参考下... 目录方法一:使用 left join + 子查询删除重复数据(推荐)方法二:创建临时表(需分多步执行,逻辑清晰,但会

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

Mycat搭建分库分表方式

《Mycat搭建分库分表方式》文章介绍了如何使用分库分表架构来解决单表数据量过大带来的性能和存储容量限制的问题,通过在一对主从复制节点上配置数据源,并使用分片算法将数据分配到不同的数据库表中,可以有效... 目录分库分表解决的问题分库分表架构添加数据验证结果 总结分库分表解决的问题单表数据量过大带来的性能