hdu - 3049 - Data Processing(乘法逆元)

2023-11-03 12:38

本文主要是介绍hdu - 3049 - Data Processing(乘法逆元),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题意:N(N<=40000)个数n1, n2, ..., nN (ni<=N),求(2 ^ n1 + 2 ^ n2 + ... + 2 ^nN) / N % 1000003。

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3049

——>>RJ白书上说“由于‘乘法逆’太重要了……”,上一年南京区赛同学也碰到了求逆元……现在,学习了。。

      什么是乘法逆?ab % m = 1 (这里的 a, b 分别都是模 m 的同余等价类),a 模 m 的乘法逆是 b,同时,b 模 m 的乘法逆是a。

      乘法逆有什么用?这个用处可还真不小。。如果要求 a / b % m(保证 b | a),但是 a 很大很大,比如 a = 2 ^ 40000,这个式子可不等价于 (a % m) / (b % m) % m。。这时,乘法逆就可以上场了。。一个数除以 b 后模 m,等价于该数乘以 b 模 m 的乘法逆后模 m。。于是上式可变成 a * b的乘法逆 % m,这就容易多了,就是 (a % m) * (b的乘法逆 % m) % m。。

      怎么求乘法逆?要求 a 模 m 的乘法逆,设其为 x,因为 a * x % m = 1,所以 a * x + m * y = 1。。这是什么,一元二次方程,于是乎,扩展欧几里得飞一下就出来了。。得意

#include <cstdio>typedef long long LL;const int MOD = 1000003;
const int MAXN = 40000 + 10;int N, kase;
LL sum;
int pow2[MAXN];void GetPow2()
{pow2[0] = 1;for (int i = 1; i < MAXN; ++i){pow2[i] = (pow2[i - 1] << 1) % MOD;}
}void Read()
{int n;sum = 0;scanf("%d", &N);for (int i = 0; i < N; ++i){scanf("%d", &n);sum = (sum + pow2[n]) % MOD;}
}void gcd(LL a, LL b, LL& d, LL& x, LL& y)
{if (!b){d = a;x = 1;y = 0;return;}else{gcd(b, a % b, d, y, x);y -= a / b * x;}
}LL Inv(int a, int n)
{LL ret, d, y;gcd(a, n, d, ret, y);return d == 1 ? (ret + n) % n : -1;
}void Solve()
{LL ret;LL inv = Inv(N, MOD);ret = sum * inv % MOD;printf("Case %d:%I64d\n", ++kase, ret);
}int main()
{int T;kase = 0;GetPow2();scanf("%d", &T);while (T--){Read();Solve();}return 0;
}


这篇关于hdu - 3049 - Data Processing(乘法逆元)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/338218

相关文章

hdu4828(卡特兰数+逆元)

这题的前几个数据分别为1,2,5,14,32......................然后确定这是个卡特兰数列 下面来介绍下卡特兰数,它的递推式为f[i+1] = f[i]*(4*n - 6)/n,其中f[2] = f[3] =1;f[4] = 2;f[5] = 14;f[6] = 32.................................. 但是这题的n太大了,所以要用到逆元,

hdu4869(逆元+求组合数)

//输入n,m,n表示翻牌的次数,m表示牌的数目,求经过n次操作后共有几种状态#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#includ

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

hdu 2093 考试排名(sscanf)

模拟题。 直接从教程里拉解析。 因为表格里的数据格式不统一。有时候有"()",有时候又没有。而它也不会给我们提示。 这种情况下,就只能它它们统一看作字符串来处理了。现在就请出我们的主角sscanf()! sscanf 语法: #include int sscanf( const char *buffer, const char *format, ... ); 函数sscanf()和

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

hdu 1754 I Hate It(线段树,单点更新,区间最值)

题意是求一个线段中的最大数。 线段树的模板题,试用了一下交大的模板。效率有点略低。 代码: #include <stdio.h>#include <string.h>#define TREE_SIZE (1 << (20))//const int TREE_SIZE = 200000 + 10;int max(int a, int b){return a > b ? a :

hdu 1166 敌兵布阵(树状数组 or 线段树)

题意是求一个线段的和,在线段上可以进行加减的修改。 树状数组的模板题。 代码: #include <stdio.h>#include <string.h>const int maxn = 50000 + 1;int c[maxn];int n;int lowbit(int x){return x & -x;}void add(int x, int num){while

hdu 3790 (单源最短路dijkstra)

题意: 每条边都有长度d 和花费p,给你起点s 终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。 解析: 考察对dijkstra的理解。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstrin

hdu 2489 (dfs枚举 + prim)

题意: 对于一棵顶点和边都有权值的树,使用下面的等式来计算Ratio 给定一个n 个顶点的完全图及它所有顶点和边的权值,找到一个该图含有m 个顶点的子图,并且让这个子图的Ratio 值在所有m 个顶点的树中最小。 解析: 因为数据量不大,先用dfs枚举搭配出m个子节点,算出点和,然后套个prim算出边和,每次比较大小即可。 dfs没有写好,A的老泪纵横。 错在把index在d