本文主要是介绍中科院计算机研究所刘刚,刘刚----中国科学院兰州化学物理研究所,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
刘刚,博士,研究员,博士生导师。中国科学院兰州化学物理研究所环境材料与生态化学研究发展中心副主任,国家马铃薯产业技术体系贮藏加工研究室主任,加工副产品综合利用岗位专家。科技部科技型中小企业技术创新基金评审专家。中国作物学会马铃薯专业委员会第六届理事,加工利用学部副主任。中国能源学会第二届理事会理事。中国化学学会永久会员。中国环境科学学会高级会员。民盟甘肃省委副主委,甘肃省政协常委。甘肃省跨世纪人才“333工程”一、二层人选。甘肃省重大项目建设管理咨询专家,甘肃省工程决策咨询专家委员会委员。
多年来从事农产品功能营养成分分离技术、农产品加工与材料、环境化学与材料、水处理工程技术和太阳能光热转化材料方面的研究开发工作。在国内外学术期刊发表论文80余篇,已获得专利授权17项。
研究方向:
①食品营养学与安全
②马铃薯加工及其废弃物资源化利用
③环境材料与水处理工程技术
④太阳能光热转化材料与农产品干燥技术
获奖及荣誉:
《马铃薯淀粉加工废弃物资源化利用与污染控制》2016年获甘肃省技术发明一等奖
《马铃薯淀粉加工废弃物资源化利用》2015年获中国产学研促进会创新成果二等奖
《纳米硅基氧化物保鲜果蜡创新研究与技术开发》2009年获中华农业科技三等奖
《新型纳米硅基氧化物(SiOx)保鲜果蜡研制》2005年获甘肃省科技二等奖
《软包装水果罐头技术开发》1997年获甘肃省星火科技二等奖
《葡萄试管繁殖技术的应用和推广》1992年国家教委科技进步二等奖
在国内外学术期刊发表论文80余篇,2010年来主要有:
1.Recovery of Protease Inhibitors from Potato Fruit Water by Expanded Bed Adsorption Chromatography in Pilot Scale.Am. J. Potato Res. 2018. DOI 10.1007/s12230-017-9605-1
2.A Simple Method to Prepare Raw Dehydrated Potato Flour by Low-Temperature Vacuum Drying. International Journal of Food Engineering. 2018.DOI: 10.1515/ijfe-2017-0127
3.A new potato variety grown in China suitable for raw eating. European Food Research and Technology.2018.DOI.10.1007/s00217-017-3009-9.
4.马铃薯块茎干物质、淀粉及还原糖含量的检测及相关性分析.现代食品科技, 2017,33(10):288-293.
5.中国马铃薯主食化面临的问题及解决方法.现代食品科技, 2017,33(9): 293-298.
6.马铃薯糖苷生物碱的水解及其工业应用.食品工业科技.2017,38(10): 368-378.
7.用Mixolab分析马铃薯生全粉的流变学特性.现代食品科, 2017,33(3): 146-154.
8.Optical properties and failure analysis of ZrC-ZrOx ceramic based spectrally selective solar absorbers deposited at a high substrate temperature.Solar Energy Materials & Solar Cells.2018.176.93-99
9.Enhanced optical properties of TiN-based spectrally selective solar absorbers deposited at a high substrate temperature. Solar Energy Materials & Solar Cells. 2017.163. 91-97.
10.Microstructure. chromaticity and thermal stability of SS/TiC-WC/Al2O3spectrally selective solar absorbers. Solar Energy Materials and Solar Cells,2017.164. 63-69.
11.Optical simulation, corrosion behavior and long term thermal stability of TiC based solar absorbers.Solar Energy Materials & Solar Cells.2017.167.150-156.
12.Structure, optical properties and thermal stability of TiC-based tandem spectrally selective solar absorber coating. Solar Energy Materials & Solar Cells.2016. 157.543-549.
13.Microstructure and Optical Properties of SS/Mo/Al2O3Spectrally Selective Solar Absorber Coating. Journal of Materials Engineering and Performance.2017.26. 161-167.
14.Book:Chapter title: Photothermal Conversion Applications of the Transition Metal (Cu, Mn, Co, Cr, and Fe) Oxides with Spinel Structure[M]//Magnetic Spinels-Synthesis. Properties and Applications. InTech, 2017. Chapter 12. ISBN 978-953-51-2974-5.
15.Enhanced thermal stability and spectral selectivity of SS/TiC-Y/Al2O3 spectrally selective solar absorber by thermal annealing. Solar Energy.2016.140.199-205.
16.Structure, optical properties and thermal stability of SS/TiC-ZrC/Al2O3 spectrally selective solar absorber. RSC Advances.2016.6.63867-63873.
17.Structure, optical properties and thermal stability of Al2O3-WC nanocomposite ceramic spectrally selective solar absorbers. Optical Materials.2016.58.219-225.
18.Enhanced absorptance of surface-textured tungsten thin film for solar absorber, Surface Engineering.2016.32.840-845.
19.Aqueous solution-chemical derived spinel Cu1.5Mn1.5O4 thin film for solar absorber application. Materials Letters.2016.179: 170-174.
20.Solution combustion of spinel CuMn2O4 ceramic pigments for thickness sensitive spectrally selective (TSSS) paint coatings. Ceramics International.2016. 42: 11966-11973.
21.Cu1.5Mn1.5O4-based ceramic spectrally selective coatings for efficient solar absorber applications. Journal of Alloys and Compounds.2016. 675: 423-432.
22.Spectrally selective Cu1.5Mn1.5O4 spinel ceramic pigments for solar thermal applications. RSC Advances.2016. 6: 32947-32955.
23.Aqueous chemical solution deposition of spinel Cu1.5Mn1.5O4 single layer films for solar selective absorber. RSC Advances. 2016, 6: 54820-54829.
24.CuCr2O4 Spinel Ceramic Pigments Synthesized by Sol-Gel Self-Combustion Method for Solar Absorber Coatings. Journal of Materials Engineering and Performance.2016, 25: 2814-2823.
25.Synthesis and characterization of CoCuMnOx spinel ceramic thin film for spectral selectivity absorption.RSC Advances.2016. 6: 87584-87592.
26.Aqueous solution-chemical derived CuMn2O4 ceramic films for spectrally solar selective absorbers, Ceramics International. 2016. 42: 19047-19057.
27.China’s turning potato to new staple food needs novel semi-finished ingredients. The XVIII Euro Food Chem conference .October 13-16. 2015. Madrid. Spain.
28.Fresh mashed potato as the partial substitution to wheat flour in bread, chiffon cake and cookies. Develop Together for a Better Future.pp. 106-107. 2015 Beijing World Potato Congress.Beijing.
29.Physicochemical Properties Of Starch Extracted From Colocasia Esculenta (l.) Schott (bun-long Taro) Grown In Hunan, China.Starch-stärke. 2014. 66. 142-148.
30.Rapid Synthesis of Acetylated Potato Starch by Microwave Heating with Iodine as Catalyst. Asian Journal of Chemistry. 2014. 26. 7931.
31.Recovery Of Native Protein From Potato Root Water By Expanded Bed Adsorption With Amberlite Xad7hp. Biotechnology And Bioprocess Engineering. 2013. 18. 981-988.
32.Synthesis and Characterization of Novel Polyimides Derived From Unsymmetrical Diamine: 2-amino-5-[4-(20-aminophenoxy) phenyl]- thiazole. Chinese Chemical Letters. 2013. 24.31-33.
33.Facile Synthesis of Novel PbS Dendritic Nanostructures with Tetraphenylphosphonium Bromide as a Ligand via Simple Hydrothermal Process. Asian Journal of Chemistry. 2013. 2. 649-652.
34.Optimization Design Of CuCrxMn2-xO4-based Paint Coatings Used For Solar Selective Applications.Solar Energy Materials and Solar Cells. 2012. 105. 293-301.
35.Low-temperature Combustion Synthesis Of CuCr2O4 Spinel Powder For Spectrally Selective Paints. Journal of Sol-gel Science And Technology. 2012. 61. 281-288.
36.Combustion Synthesis and Characterization of Spinel NiCr2O4. Chinese Journal of Inorganic Chemistry. 2012. 28. 1979-1984.
37.Sol-gel combustion derived CoCuMnOx spinels as pigment for spectrally selective paints. Journal of the American Ceramic Society.2011. 94.827-832.
38.Preparation of Lead Sulfide/Silica Core-Shell Structure Submicron Particles by Ultrasonic Method. Chinese Journal of Inorganic Chemistry. 2009.8.1497-1503.
39.太阳能光谱选择性吸收涂层研究进展.材料导报,2015, (29): 48-51.
40.HPLC法测定马铃薯块茎中糖苷生物碱的含量.中国马铃薯,2015, 29 (5): 263-268.
41.马铃薯营养综述.中国马铃薯,2015,29 (4): 233-243.
42.马铃薯胰凝乳蛋白酶抑制剂活力的测定.现代食品科技,2015. 2 (31): 274-279.
43.马铃薯蛋白的分离及氨基酸组成分析.食品科学,2014,9 (35): 53-56.
44.马铃薯淀粉加工分离汁水资源化处理应用技术研究.食品科技,2014,8 (274): 162-165.
45.马铃薯加工淀粉废水回收蛋白酸水解制备复合氨基酸,食品科技. 2013,3 (10) 197-201.
46.天然马铃薯蛋白的分离及氨基酸组成分析.食品科学. 2013.7.1.
47.CuCoMnOx光谱选择性吸收涂层的研究.精细化工,2012,29 (3):1-5.
48.马铃薯淀粉加工分离汁水提取蛋白质应用技术研究.马铃薯产业与水资源高效利用,哈尔滨工程大学出版社, 2012, 469-474.
49.双波长比色法测定马铃薯直链/支链淀粉含量.现代食品科技,2012, 28 (1): 119-122.
50.有机化纳米粘土基絮凝吸附材料对马铃薯淀粉加工废水的资源化处理.环境污染与防治,2011, 33 (11): 44-48.
51.马铃薯直链淀粉/支链淀粉的分离.现代食品科技,2011,27 (12): 1466-1468.
52.有机化纳米黏土对马铃薯废水的资源化处理.环境污染与防治, 2011,33 (11), 44-48.
53.马铃薯淀粉废水的资源化处理研究.工业水处理, 2011,12 (31): 35-38.
54.马铃薯渣提取果胶的工艺条件研究.安徽农业科学,2011,39 (35): 21770- 21771.
55.氯苯胺灵在土壤和水中的残留及降解动态研究.农药.2011, 50(8): 585-587.
56.凹凸棒黏土接枝聚丙烯腈的条件优化与吸附性能研究.环境工程学报.2010.8.
联系方式:
电 话: (86)-931-4968866
传 真: (86)-931-4968013
E-mail:gangliu@licp.cas.cn
这篇关于中科院计算机研究所刘刚,刘刚----中国科学院兰州化学物理研究所的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!