KM算法 详解+模板 出自http://blog.sina.com.cn/s/blog_691ce2b701016reh.html

本文主要是介绍KM算法 详解+模板 出自http://blog.sina.com.cn/s/blog_691ce2b701016reh.html,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

先说KM算法求二分图的最佳匹配思想,再详讲KM的实现。
【KM算法求二分图的最佳匹配思想】

对于具有二部划分( V1, V2 )的加权完全二分图,其中 V1= { x1, x2, x3, ... , xn }, V2= { y1, y2, y3, ... , yn },边< xi, yj >具有权值 Wi,j 。该带权二分图中一个总权值最大的完美匹配,称之为最佳匹配。
 
记 L(x) 表示结点 x 的标记量,如果对于二部图中的任何边<x,y>,都有 L(x)+ L(y)>= Wx,y,我们称 L 为二部图的可行顶标。
设 G(V,E) 为二部图, G'(V,E') 为二部图的子图。如果对于 G' 中的任何边<x,y> 满足, L(x)+ L(y)== Wx,y,我们称 G'(V,E') 为 G(V,E) 的等价子图。
 
定理一:设 L 是二部图 G 的可行顶标。若 L 等价子图 G有完美匹配 M,则 M 是 G 的最佳匹配。
证明:由于 GL 是 G 的等价子图,M 是 GL 的完美匹配,所以,M 也是 G  的完美匹配。以由于对于匹配 M 的每条边 e ,都有 e∈ E( GL ),而且 M 中每条边覆盖每个顶点正好一次,所以
W( M )= å W(e), e∈ M = å L(x), x∈ V
另一方面,对于 G 的任何完美匹配 M' 有
W( M' )= å W(e), e∈ M' <= å L(x), x∈ V
于是 W( M )>= W( M' ),即 M 是 G 的最优匹配。
 
由上述定理,我们可以通过来不断修改可行顶标,得到等价子图,从而求出最佳匹配。
就像匈牙利算法一样,我们依次为每一个顶点 i 寻找增广路径,如果寻找增广路径失败,我们就修改相应的可行顶标,来得到增广路径。
如图:
|  1  2  3  |
|  3  2  4  |
|  2  3  5  |
若要对这个完全二分图求最佳匹配
 
初始化:
Lx(1)= max{ y| w(1,y), 1<= y<= 3 }= max{ 1, 2, 3 }= 3, Ly(1)= 0
Lx(2)= max{ 3, 2, 4 }= 4, Ly(2)= 0
Lx(3)= max{ 2, 3, 5 }= 5, Ly(3)= 0;
我们建立等价子图( 满足 Lx(x)+ Ly(y)== W(x,y) ) 如下:
km算法求二分图最佳匹配
km算法求二分图最佳匹配
对于该图,运用匈牙利算法对 X 部顶点 1 求增广路径,得到一个匹配,如图( 红色代表匹配边 ):
 对 X 部顶点 2 求增广路径失败,寻找增广路径的过程为 X 2-> Y 3-> X 1。我们把寻找增广路径失败的 DFS 的交错树中,在 X 部顶点集称之为 S, 在 Y 部的顶点集称之为 T。则 S= { 1, 2 },T= { 3 }。现在我们就通过修改顶标值来扩大等价子图,如何修改。
 
1)   我们寻找一个 d 值,使得 d= min{ (x,y)| Lx(x)+ Ly(y)- W(x,y), x∈ S, y∉ T },因些,这时 d= min{
Lx(1)+Ly(1)-W(1,1),  Lx(1)+Ly(2)-W(1,2),  Lx(2)+Ly(1)-W(2,1),  Lx(2)+Ly(2)-W(2,2) }=
min{ 3+0- 1, 3+0-2,  4+0-3,  4+0-2 }= min{ 2, 1, 1, 2 }= 1。
寻找最小的 d 是为了保证修改后仍满足性质对于边 <x,y> 有 Lx(x)+ Ly(y)>= W(x,y)。
 
2)   然后对于顶点 x
1. 如果 x∈ S 则 Lx(x)= Lx(x)- d。
2. 如果 x∈ T 则 Ly(x)= Ly(x)+ d。
3. 其它情况保持不变。
如此修改后,我们发现对于边<x,y>,顶标 Lx(x)+ Ly(y) 的值为
1.  Lx(x)- d+ Ly(y)+ d,  x∈ S, y∈ T。
2.  Lx(x)+ Ly(y),  x∉ S,  y∉ T。
3.  Lx(x)- d+ Ly(y), x∈ S, y∉ T。
4.  Lx(x)+ Ly(y)+ d, x∉ S,  y∈ T。
易知,修改后对于任何边仍满足 Lx(x)+ Ly(y)>= W(x,y),并且第三种情况顶标值减少了 d,如此定会使等价子图扩大。
 
就上例而言: 修改后 Lx(1)= 2, Lx(2)= 3, Lx(3)= 5, Ly(1)= 0, Ly(1)= 0, Ly(2)= 0, Ly(3)= 1。
这时 Lx(2)+Ly(1)=3+0=3= W(2,1),在等价子图中增加了一条边,等价子图变为:
 km算法求二分图最佳匹配
如此按以上方法,得到等价子图的完美匹配。
 
另外计算 d 值的时候可以进行一些优化。
定义 slack(y)= min{ (x,y)| Lx(x)+ Ly(y)- W(x,y),x∈ S,  y∉ T }
这样能在寻找增广路径的时候就顺便将 slack 求出。

 

(以上为摘上网络)

【KM算法及其具体过程】
(1)可行点标:每个点有一个标号,记lx[i]为X方点i的标号,ly[j]为Y方点j的标号。如果对于图中的任意边(i, j, W)都有lx[i]+ly[j]>=W,则这一组点标是可行的。特别地,对于lx[i]+ly[j]=W的边(i, j, W),称为可行边
(2)KM 算法的核心思想就是通过修改某些点的标号(但要满足点标始终是可行的),不断增加图中的可行边总数,直到图中存在仅由可行边组成的完全匹配为止,此时这个匹配一定是最佳的(因为由可行点标的的定义,图中的任意一个完全匹配,其边权总和均不大于所有点的标号之和,而仅由可行边组成的完全匹配的边权总和等于所有点的标号之和,故这个匹配是最佳的)。一开始,求出每个点的初始标号:lx[i]=max{e.W|e.x=i}(即每个X方点的初始标号为与这个X方点相关联的权值最大的边的权值),ly[j]=0(即每个Y方点的初始标号为0)。这个初始点标显然是可行的,并且,与任意一个X方点关联的边中至少有一条可行边
(3)然后,从每个X方点开始DFS增广。DFS增广的过程与最大匹配的Hungary算法基本相同,只是要注意两点:一是只找可行边,二是要把搜索过程中遍历到的X方点全部记下来(可以用vst搞一下),以进行后面的修改;
(4)增广的结果有两种:若成功(找到了增广轨),则该点增广完成,进入下一个点的增广。若失败(没有找到增广轨),则需要改变一些点的标号,使得图中可行边的数量增加。方法为:将所有在增广轨中(就是在增广过程中遍历到)的X方点的标号全部减去一个常数d,所有在增广轨中的Y方点的标号全部加上一个常数d,则对于图中的任意一条边(i, j, W)(i为X方点,j为Y方点):
<1>i和j都在增广轨中:此时边(i, j)的(lx[i]+ly[j])值不变,也就是这条边的可行性不变(原来是可行边则现在仍是,原来不是则现在仍不是);
<2>i在增广轨中而j不在:此时边(i, j)的(lx[i]+ly[j])的值减少了d,也就是原来这条边不是可行边(否则j就会被遍历到了),而现在可能是;
<3>j在增广轨中而i不在:此时边(i, j)的(lx[i]+ly[j])的值增加了d,也就是原来这条边不是可行边(若这条边是可行边,则在遍历到j时会紧接着执行DFS(i),此时i就会被遍历到),现在仍不是;
<4>i和j都不在增广轨中:此时边(i, j)的(lx[i]+ly[j])值不变,也就是这条边的可行性不变。
这样,在进行了这一步修改操作后,图中原来的可行边仍可行,而原来不可行的边现在则可能变为可行边。那么d的值应取多少?显然,整个点标不能失去可行性,也就是对于上述的第<2>类边,其lx[i]+ly[j]>=W这一性质不能被改变,故取所有第<2>类边的 (lx[i]+ly[j]-W)的最小值作为d值即可。这样一方面可以保证点标的可行性,另一方面,经过这一步后,图中至少会增加一条可行边。
(5)修改后,继续对这个X方点DFS增广,若还失败则继续修改,直到成功为止;
(6)以上就是KM算法的基本思路。但是朴素的实现方法,时间复杂度为O(n4)——需要找O(n)次增广路,每次增广最多需要修改O(n)次顶标,每次修改顶标时由于要枚举边来求d值,复杂度为O(n2)。实际上KM算法的复杂度是可以做到O(n3)的。我们给每个Y顶点一个“松弛量”函数slack,每次开始找增广路时初始化为无穷大。在寻找增广路的过程中,检查边(i,j)时,如果它不在相等子图中,则让slack[j]变成原值与 A[i]+B[j]-w[i,j]的较小值。这样,在修改顶标时,取所有不在交错树中的Y顶点的slack值中的最小值作为d值即可。但还要注意一点:修改顶标后,要把所有不在交错树中的Y顶点的slack值都减去d。

【求二分图的最小匹配】
只需把权值取反,变为负的,再用KM算出最大权匹配,取反则为其最小权匹配。

#include <stdio.h>
#include <string.h>
#define M 310
#define inf 0x3f3f3f3fint n,nx,ny;
int link[M],lx[M],ly[M],slack[M];    //lx,ly为顶标,nx,ny分别为x点集y点集的个数
int visx[M],visy[M],w[M][M];int DFS(int x)
{visx[x] = 1;for (int y = 1;y <= ny;y ++){if (visy[y])continue;int t = lx[x] + ly[y] - w[x][y];if (t == 0)       //{visy[y] = 1;if (link[y] == -1||DFS(link[y])){link[y] = x;return 1;}}else if (slack[y] > t)  //不在相等子图中slack 取最小的slack[y] = t;}return 0;
}
int KM()
{int i,j;memset (link,-1,sizeof(link));memset (ly,0,sizeof(ly));for (i = 1;i <= nx;i ++)            //lx初始化为与它关联边中最大的for (j = 1,lx[i] = -inf;j <= ny;j ++)if (w[i][j] > lx[i])lx[i] = w[i][j];for (int x = 1;x <= nx;x ++){for (i = 1;i <= ny;i ++)slack[i] = inf;while (1){memset (visx,0,sizeof(visx));memset (visy,0,sizeof(visy));if (DFS(x))     //若成功(找到了增广轨),则该点增广完成,进入下一个点的增广break;  //若失败(没有找到增广轨),则需要改变一些点的标号,使得图中可行边的数量增加。//方法为:将所有在增广轨中(就是在增广过程中遍历到)的X方点的标号全部减去一个常数d,//所有在增广轨中的Y方点的标号全部加上一个常数dint d = inf;for (i = 1;i <= ny;i ++)if (!visy[i]&&d > slack[i])d = slack[i];for (i = 1;i <= nx;i ++)if (visx[i])lx[i] -= d;for (i = 1;i <= ny;i ++)  //修改顶标后,要把所有不在交错树中的Y顶点的slack值都减去dif (visy[i])ly[i] += d;elseslack[i] -= d;}}int res = 0;for (i = 1;i <= ny;i ++)if (link[i] > -1)res += w[link[i]][i];return res;
}
int main ()
{int i,j;while (scanf ("%d",&n)!=EOF){nx = ny = n;//  memset (w,0,sizeof(w));for (i = 1;i <= n;i ++)for (j = 1;j <= n;j ++)scanf ("%d",&w[i][j]);int ans = KM();printf ("%d\n",ans);}return 0;
}



 

 

转载于:https://www.cnblogs.com/vermouth/p/3710193.html

这篇关于KM算法 详解+模板 出自http://blog.sina.com.cn/s/blog_691ce2b701016reh.html的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/332870

相关文章

Mysql 中的多表连接和连接类型详解

《Mysql中的多表连接和连接类型详解》这篇文章详细介绍了MySQL中的多表连接及其各种类型,包括内连接、左连接、右连接、全外连接、自连接和交叉连接,通过这些连接方式,可以将分散在不同表中的相关数据... 目录什么是多表连接?1. 内连接(INNER JOIN)2. 左连接(LEFT JOIN 或 LEFT

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

Linux内核之内核裁剪详解

《Linux内核之内核裁剪详解》Linux内核裁剪是通过移除不必要的功能和模块,调整配置参数来优化内核,以满足特定需求,裁剪的方法包括使用配置选项、模块化设计和优化配置参数,图形裁剪工具如makeme... 目录简介一、 裁剪的原因二、裁剪的方法三、图形裁剪工具四、操作说明五、make menuconfig

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

详解Java中的敏感信息处理

《详解Java中的敏感信息处理》平时开发中常常会遇到像用户的手机号、姓名、身份证等敏感信息需要处理,这篇文章主要为大家整理了一些常用的方法,希望对大家有所帮助... 目录前后端传输AES 对称加密RSA 非对称加密混合加密数据库加密MD5 + Salt/SHA + SaltAES 加密平时开发中遇到像用户的

React实现原生APP切换效果

《React实现原生APP切换效果》最近需要使用Hybrid的方式开发一个APP,交互和原生APP相似并且需要IM通信,本文给大家介绍了使用React实现原生APP切换效果,文中通过代码示例讲解的非常... 目录背景需求概览技术栈实现步骤根据 react-router-dom 文档配置好路由添加过渡动画使用

Springboot使用RabbitMQ实现关闭超时订单(示例详解)

《Springboot使用RabbitMQ实现关闭超时订单(示例详解)》介绍了如何在SpringBoot项目中使用RabbitMQ实现订单的延时处理和超时关闭,通过配置RabbitMQ的交换机、队列和... 目录1.maven中引入rabbitmq的依赖:2.application.yml中进行rabbit

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初

Python如何实现 HTTP echo 服务器

《Python如何实现HTTPecho服务器》本文介绍了如何使用Python实现一个简单的HTTPecho服务器,该服务器支持GET和POST请求,并返回JSON格式的响应,GET请求返回请求路... 一个用来做测试的简单的 HTTP echo 服务器。from http.server import HT

Python绘制土地利用和土地覆盖类型图示例详解

《Python绘制土地利用和土地覆盖类型图示例详解》本文介绍了如何使用Python绘制土地利用和土地覆盖类型图,并提供了详细的代码示例,通过安装所需的库,准备地理数据,使用geopandas和matp... 目录一、所需库的安装二、数据准备三、绘制土地利用和土地覆盖类型图四、代码解释五、其他可视化形式1.