NVIDIA Tesla V100部署与使用

2023-11-02 18:50
文章标签 部署 使用 nvidia v100 tesla

本文主要是介绍NVIDIA Tesla V100部署与使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在先前的实验过程中,使用了腾讯云提供的nvidia T4GPU,尽管其性能较博主的笔记本有了极大提升,但总感觉仍有些美中不足,因此本次博主租赁了nvidia V100 GPU,看看它的性能表现如何。
和先前一样,只需要将服务器使用xshell连接我们就可以使用了。我们首先看下其配置情况:

在这里插入图片描述
可以看到,其GPU显存达到了32G,先前博主查询V100的显存仅为16G的,这可当真是意外之喜。
然后便是老生常谈的环境部署过程了:
创建虚拟环境:

conda create -n yolo python=3.8

此时报错:

NoWritableEnvsDirError: No writeable envs directories configured.- /home/ubuntu/.conda/envs- /usr/local/miniconda3/envs

这是没有写入权限造成的,修改一下:

sudo chmod a+w .conda

或者执行下面命令,注意路径可能不同

sudo chmod -R 777 /home/ubuntu/miniconda3

再次创建环境:成功。随后激活yolo环境

source activate yolo

然后安装pytorch及其依赖

conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch

其他依赖包

 pip install matplotlibpip install scipypip install tensorboardpip install tqdmpip install opencv-python当然这里可以一次性使用以下命令全部安装:pip install matplotlib,scipy,tensorboard,tqdm,opencv-python

在这里插入图片描述

随后我们使用pycharm连接服务器。

在这里插入图片描述

然后便可以开始训练了,设置batch-size=32,epoch为400,此时GPU使用情况如下:

在这里插入图片描述

当我们将batch-size调整为48时,在训练过程中,其会保存一些数据,此时便存在显存溢出的风险了。

在这里插入图片描述
警告:
根据实验,将batch-size设置为32依旧会爆显存,因此将其设置为24,其实在监控中可以发现,GPU可能只是在一瞬间对显存需求较大,从而造成爆显存问题,如我们在训练完第一轮后保留一些梯度信息,模型信息时会对显存需求激增,从而出错。

在这里插入图片描述
最终本次实验设置batch-size=24,epoch=400
实验环境:
GPU为 NVIDIA Tesla V100,显存32G
CPU为Intel® Xeon® Gold 6133 CPU @ 2.50GHz
下图是CPU配置信息,使用cat /proc/cpuinfo即可查询

在这里插入图片描述
使用下面命令查询cpu信息,可知该服务器上由8个CPU,每个CPU有8个核心,每个核心为8线程。共8×8×8=512个线程

(yolo) ubuntu@VM-0-4-ubuntu:~$ grep 'processor' /proc/cpuinfo |  wc -l
8
(yolo) ubuntu@VM-0-4-ubuntu:~$ grep 'physical id' /proc/cpuinfo 
physical id	: 0
physical id	: 0
physical id	: 0
physical id	: 0
physical id	: 0
physical id	: 0
physical id	: 0
physical id	: 0
(yolo) ubuntu@VM-0-4-ubuntu:~$ grep 'core id' /proc/cpuinfo | sort -u |wc -l
8
(yolo) ubuntu@VM-0-4-ubuntu:~$ grep 'processor' /proc/cpuinfo | sort -u | wc -l
8
(yolo) ubuntu@VM-0-4-ubuntu:~$ 

历时28个小时,epoch=400,batch-size=24。
在本次运行完成后,竟然惊奇的发现较先前有了很大进步,而且在运行时也发现其loss依旧还有下降的趋势,因此决定在此基础上再次迭代200次并进行观测结果。
如此看来进行简单原因分析,首先说较先前训练轮数增加了,此外batch-size也增大了。可能便是此使其产生变化。

这篇关于NVIDIA Tesla V100部署与使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/332573

相关文章

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

如何在Ubuntu 24.04上部署Zabbix 7.0对服务器进行监控

《如何在Ubuntu24.04上部署Zabbix7.0对服务器进行监控》在Ubuntu24.04上部署Zabbix7.0监控阿里云ECS服务器,需配置MariaDB数据库、开放10050/1005... 目录软硬件信息部署步骤步骤 1:安装并配置mariadb步骤 2:安装Zabbix 7.0 Server

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window

Ubuntu如何分配​​未使用的空间

《Ubuntu如何分配​​未使用的空间》Ubuntu磁盘空间不足,实际未分配空间8.2G因LVM卷组名称格式差异(双破折号误写)导致无法扩展,确认正确卷组名后,使用lvextend和resize2fs... 目录1:原因2:操作3:报错5:解决问题:确认卷组名称​6:再次操作7:验证扩展是否成功8:问题已解

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker