本文主要是介绍C - Travel along the Line ZOJ - 4006,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
题目
C - Travel along the Line ZOJ - 4006
BaoBao is traveling along a line with infinite length.At the beginning of his trip, he is standing at position 0. At the beginning of each second, if he is standing at position , with probability he will move to position , with probability he will move to position , and with probability he will stay at position . Positions can be positive, 0, or negative.DreamGrid, BaoBao's best friend, is waiting for him at position . BaoBao would like to meet DreamGrid at position after exactly seconds. Please help BaoBao calculate the probability he can get to position after exactly seconds.It's easy to show that the answer can be represented as , where and are coprime integers, and is not divisible by . Please print the value of modulo , where is the multiplicative inverse of modulo .Input
There are multiple test cases. The first line of the input contains an integer (about 10), indicating the number of test cases. For each test case:The first and only line contains two integers and (). Their meanings are described above.Output
For each test case output one integer, indicating the answer.Sample Input
3
2 -2
0 0
0 1
Sample Output
562500004
1
0
题解:
我们枚举向左移动的次数,那么很容易可以得到向右和保持不动的此处
然后根据公式
(nl)(n−lr)(14)l+r(12)s=(nl)(n−lr)(12)2(l+r)+s ( n l ) ( n − l r ) ( 1 4 ) l + r ( 1 2 ) s = ( n l ) ( n − l r ) ( 1 2 ) 2 ( l + r ) + s
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <stack>
#include <set>
#include <map>
#include <queue>
#define scd(a) scanf("%d",&a)
#define scdd(a,b) scanf("%d%d",&a,&b)
#define scddd(a,b,c) scanf("%d%d%d",&a,&b,&c)#define mset(var,val) memset(var,val,sizeof(var))#define test(a) cout<<a<<endl
#define test2(a,b) cout<<a<<" "<<b<<endl#define test3(a,b,c) cout<<a<<" "<<b<<" "<<c<<endl
const int N= 2e5;
const int mod =1e9+7;
using namespace std;
typedef long long ll;
ll a[N+10];
ll b[N+10];
ll fac[N+10];
ll inv(ll a){if(a==1)return 1;return inv(mod%a)*(mod-mod/a)%mod;
}
ll C(ll n,ll m){ll ans = fac[n]*(inv(1ll*fac[m]*fac[n-m]%mod));return ans % mod ;
}
void init(){fac[0]=1;b[0]=1;for(int i =1;i<=N;i++){fac[i]=(fac[i-1]*i)%mod;b[i]=(b[i-1]*2ll)%mod;}
}void work(){int n,y;scdd(n,y);long long ans=0;for(int i=0;i<=n;i++){int l = i;int r = y+i;int s = n-l-r;if(r<0||s<0||r>n||s>n)continue;ll son = C(n,l)*C(n-l,r)%mod;ll mon = inv(b[2*(l+r)+s]);ans =( ans + (1ll*son*mon))%mod;}printf("%lld\n",ans);
}
int main(){#ifdef localfreopen("in.txt","r",stdin);#endifint t;init();scd(t);while(t--){work();}
}
这篇关于C - Travel along the Line ZOJ - 4006的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!