莫尔条纹--处理及分析 C++

2023-11-02 09:20
文章标签 分析 c++ 处理 条纹 莫尔

本文主要是介绍莫尔条纹--处理及分析 C++,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

老师评语:可以再利用骨架提取做一遍,两种方法比较精度,有需要的小伙伴可以直接参考!

  1. 整体思路

通过观察原图像,图像存在噪声点,且黑色条纹边界不清晰,使用滤波、图像增强、二值化等方法对原图像进行预处理,另外为保证测量结果的准确性,使用图像三作为原图像,测量多个距离值并求均值。

 

原图像

中值滤波

图像增强(锐化)

二值化

按位取反

膨胀:矩形结构元素、十字形结构元素,效果相差不大

腐蚀:矩形结构元素、十字形结构元素,十字形效果较好,选择十字形

轮廓检测及绘制

观察图像20个轮廓特征都为不规则曲线,利用霍夫直线检测无法准确检测出直线,由于图像由一个个图像点组成所以使用直线拟合的方法,将每个由像素点组成的轮廓拟合成直线。

获取轮廓像素坐标点

直线拟合

获取拟合直线斜率及解析式

由于直线非平行直线无法直接求出图像之间的距离,求条纹间距时,两个阴影中心的距离=一个轮廓至下下轮廓的距离,使用等价代换的原则,计算直线1和直线3之间的距离。无法直接求解:方法1:两条直线,一条直线保持不变,另一条直线理解为一个个的点,求点到直线直接的距离再求均值

方法二:考虑到直线数量众多,方法一的计算量巨大,且受直线偏移影响严重。20条直线的斜率差别不大,求取20条直线的斜率,去掉最大值和最小值求均值,做出20条直线的类垂直线,求取他们之间的交点,获取交点坐标,利用公式计算交点1和交点3之间的距离,一共18个交点距离,去掉最大值和最小值求出均值,得出最终的距离49.4991个像素点。

2、程序源码

#include <iostream>

#include <opencv2/opencv.hpp>

using namespace std;

using namespace cv;

void drawLine(Mat &img, vector<Vec4i>lines, double rows, double cols, Scalar scalar, int n)

{

Point pt1, pt2;

for (size_t i = 0; i < lines.size();i++)

{

float rho = lines[i][0];

float theta = lines[i][1];

double a = cos(theta);

double b = sin(theta);

double x0 = a*rho, y0 = b*rho;

double length = max(rows, cols);

pt1.x = cvRound(x0 + length*(-b));

pt1.y = cvRound(y0 + length*(a));

pt2.x = cvRound(x0 - length*(-b));

pt2.y = cvRound(y0 - length*(a));

line(img, pt1, pt2, scalar, n);

}

}

int main() {

Mat image, gray, src, dst, gray1;//定义Mat类型的变量

image = imread("莫尔条纹3.png", 0);//读取程序文件夹中的图像,并赋值给变量image,0代表灰度图,1代表彩色图

if (!image.data) {

printf("could not find image");

return -1;

}

namedWindow("image", WINDOW_AUTOSIZE); //定义用户可调节大小的窗口,并命名为image

imshow("image", image);  //在image窗口里展示image图像

int w = image.cols;

int h = image.rows;

cout << "图像宽:" << w << endl;

cout << "图像高:" << h << endl;

//图像去噪(中值滤波)

medianBlur(image, src, 7);

imshow("meidan denoise demo", src);

//图像锐化

Mat kernel = (Mat_<char>(3, 3) << 0, -1, 0, -1, 5, -1, 0, -1, 0);

filter2D(src, dst, src.depth(), kernel);

imshow("锐化", dst);

//二值化

threshold(dst, gray, 120, 255, THRESH_BINARY );

imshow("gray", gray);

//按位取反

bitwise_not(gray, gray1);

imshow("gray1",gray1);

//形态学操作-膨胀

Mat struct1, struct2;

struct1 = getStructuringElement(0, Size(3, 3));  //矩形结构元素

struct2 = getStructuringElement(1, Size(3, 3));  //十字结构元素

Mat dilateGray, dilateGray1;

dilate(gray1, dilateGray, struct1, Point(-1, -1), 1);

dilate(gray1, dilateGray1, struct2, Point(-1, -1), 2);

imshow("dilateGray", dilateGray);

imshow("erodeGray1", dilateGray1);

//形态学操作-腐蚀

Mat erodeGray, erodeGray1;

Mat struct3, struct4;

struct3 = getStructuringElement(0, Size(3, 3));  //矩形结构元素

struct4 = getStructuringElement(1, Size(3, 3));  //十字结构元素

erode(dilateGray, erodeGray, struct3, Point(-1, -1), 3);

erode(dilateGray, erodeGray1, struct4, Point(-1, -1), 3);

imshow("erodeGray", erodeGray);

imshow("erodeGray1", erodeGray1);

Mat edge;

Canny(erodeGray, edge, 80, 180, 3, false);

//imshow("edge",edge);

//轮廓发现与绘制

vector<vector<Point>> contours;

vector<Vec4i> hierarchy;

Vec4f line0, line1, line2, line3, line4, line5, line6, line7, line8,line9,line10,line11,line12,line13,line14,line15, line16, line17, line18,line19;

findContours(edge, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point());

//绘制轮廓

for (int t = 0; t < hierarchy.size(); t++)

{

drawContours(edge, contours, t, Scalar(255, 255, 255), 1, 4);

//printf("%d", t);

}

int m0, n0;

for (m0 = 0; m0 < contours.size(); m0++)

{

for (n0 = 0; n0 < contours[m0].size(); n0++)

cout << contours[m0][n0] << "";

cout << "\n";

}

//显示结果

imshow("轮廓绘制结果", edge);

vector<Point2f>point_0;

vector<Point2f>point_1;

vector<Point2f>point_2;

vector<Point2f>point_3;

vector<Point2f>point_4;

vector<Point2f>point_5;

vector<Point2f>point_6;

vector<Point2f>point_7;

vector<Point2f>point_8;

vector<Point2f>point_9;

vector<Point2f>point_10;

vector<Point2f>point_11;

vector<Point2f>point_12;

vector<Point2f>point_13;

vector<Point2f>point_14;

vector<Point2f>point_15;

vector<Point2f>point_16;

vector<Point2f>point_17;

vector<Point2f>point_18;

vector<Point2f>point_19;

int m, n;

for (m = 0; m < contours.size(); m++)

{

for (n = 0; n < contours[m].size(); n++)

{

switch (m)

{

case 0:

point_0.push_back(contours[m][n]);

break;

case 1:

point_1.push_back(contours[m][n]);

break;

case 2:

point_2.push_back(contours[m][n]);

break;

case 3:

point_3.push_back(contours[m][n]);

break;

case 4:

point_4.push_back(contours[m][n]);

break;

case 5:

point_5.push_back(contours[m][n]);

break;

case 6:

point_6.push_back(contours[m][n]);

break;

case 7:

point_7.push_back(contours[m][n]);

break;

case 8:

point_8.push_back(contours[m][n]);

break;

case 9:

point_9.push_back(contours[m][n]);

break;

case 10:

point_10.push_back(contours[m][n]);

break;

case 11:

point_11.push_back(contours[m][n]);

break;

case 12:

point_12.push_back(contours[m][n]);

break;

case 13:

point_13.push_back(contours[m][n]);

break;

case 14:

point_14.push_back(contours[m][n]);

break;

case 15:

point_15.push_back(contours[m][n]);

break;

case 16:

point_16.push_back(contours[m][n]);

break;

case 17:

point_17.push_back(contours[m][n]);

break;

case 18:

point_18.push_back(contours[m][n]);

break;

case 19:

point_19.push_back(contours[m][n]);

break;

default:

cout << "input error" << endl;

}

}

}

Mat img(321, 432,CV_8UC1, cv::Scalar(0));

//直线拟合0

fitLine(point_0, line0, DIST_L1, 0, 0.01, 0.01);

cout << line0 << endl;

double k0 = line0[1] / line0[0];

cout << "直线斜率0:  " << k0 << endl;

double A0 = k0, B0 = -1, C0 = line0[3] - k0*line0[2] ;

cout << "直线解析式:" << A0 << "x " << B0 << "y +" << C0 << " = 0 " << endl;

Point point00, point01;

point00.x = 0;

point00.y = C0;

point01.y = 321;

point01.x = (321-C0)/k0;

line(img, point00, point01, Scalar(255, 255, 255), 1, LINE_8, 0);

//直线拟合1

fitLine(point_1, line1, DIST_L1, 0, 0.01, 0.01);

cout << line1 << endl;

double k1 = line1[1] / line1[0];

cout << "直线斜率1:  " << k1 << endl;

double A1 = k1, B1 = -1, C1 = line1[3] - k1*line1[2] ;

cout << "直线解析式:" << A1 << "x " << B1 << "y +" << C1 << " = 0 " << endl;

Point point10, point11;

point10.x = 0;

point10.y = C1;

point11.y = 321;

point11.x = (321 - C1) / k1;

line(img, point10, point11, Scalar(255, 255, 255), 1, LINE_8, 0);

//直线拟合2

fitLine(point_2, line2, DIST_L1, 0, 0.01, 0.01);

double k2 = line2[1] / line2[0];

cout << "直线斜率2:  " << k2 << endl;

double A2 = k2, B2 = -1, C2 = line2[3] - line2[2] * k2;

cout << "直线解析式:" << A2 << "x " << B2 << "y +" << C2 << " = 0 " << endl;

Point point20, point21;

point20.x = 0;

point20.y = C2;

point21.y = 321;

point21.x = (321 - C2) / k2;

line(img, point20, point21, Scalar(255, 255, 255), 1, LINE_8, 0);

//直线拟合3

fitLine(point_3, line3, DIST_L1, 0, 0.01, 0.01);

double k3 = line3[1] / line3[0];

cout << "直线斜率3:  " << k3 << endl;

double A3 = k3, B3 = -1, C3 = line3[3] - line3[2] * k3;

cout << "直线解析式:" << A3 << "x " << B3 << "y +" << C3 << " = 0 " << endl;

Point point30, point31;

point30.x = 0;

point30.y = C3;

point31.y = 321;

point31.x = (321 - C3) / k3;

line(img, point30, point31, Scalar(255, 255, 255), 1, LINE_8, 0);

//直线拟合4

fitLine(point_4, line4, DIST_L1, 0, 0.01, 0.01);

double k4 = line4[1] / line4[0];

cout << "直线斜率4:  " << k4 << endl;

double A4 = k4, B4 = -1, C4 =  line4[3] - line4[2] * k4;

cout << "直线解析式:" << A4 << "x " << B4 << "y +" << C4 << " = 0 " << endl;

Point point40, point41;

point40.x = 0;

point40.y = C4;

point41.y = 321;

point41.x = (321 - C4) / k4;

line(img, point40, point41, Scalar(255, 255, 255), 1, LINE_8, 0);

//直线拟合5

fitLine(point_5, line5, DIST_L1, 0, 0.01, 0.01);

double k5 = line5[1] / line5[0];

cout << "直线斜率5:  " << k5 << endl;

double A5 = k5, B5 = -1, C5 = line5[3] - line5[2] * k5;

cout << "直线解析式:" << A5 << "x " << B5 << "y +" << C5 << " = 0 " << endl;

Point point50, point51;

point50.x = 0;

point50.y = C5;

point51.y = 321;

point51.x = (321 - C5) / k5;

line(img, point50, point51, Scalar(255, 255, 255), 1, LINE_8, 0);

//直线拟合6

fitLine(point_6, line6, DIST_L1, 0, 0.01, 0.01);

double k6 = line6[1] / line6[0];

cout << "直线斜率6:  " << k6 << endl;

double A6 = k6, B6 = -1, C6 = line6[3] - line6[2] * k6;

cout << "直线解析式:" << A6 << "x " << B6 << "y +" << C6 << " = 0 " << endl;

Point point60, point61;

point60.x = 0;

point60.y = C6;

point61.y = 321;

point61.x = (321 - C6) / k6;

line(img, point60, point61, Scalar(255, 255, 255), 1, LINE_8, 0);

//直线拟合7

fitLine(point_7, line7, DIST_L1, 0, 0.01, 0.01);

double k7 = line7[1] / line7[0];

cout << "直线斜率7:  " << k7 << endl;

double A7 = k7, B7 = -1, C7 = line7[3] - line7[2] * k7;

cout << "直线解析式:" << A7 << "x " << B7 << "y +" << C7 << " = 0 " << endl;

Point point70, point71;

point70.x = 0;

point70.y = C7;

point71.y = 321;

point71.x = (321 - C7) / k7;

line(img, point70, point71, Scalar(255, 255, 255), 1, LINE_8, 0);

//直线拟合8

fitLine(point_8, line8, DIST_L1, 0, 0.01, 0.01);

double k8 = line8[1] / line8[0];

cout << "直线斜率8:  " << k8 << endl;

double A8 = k8, B8 = -1, C8 = line8[3] - line8[2] * k8;

cout << "直线解析式:" << A8 << "x " << B8 << "y " << C8 << " = 0 " << endl;

Point point80, point81;

point80.x = 0;

point80.y = C8;

point81.y = 321;

point81.x = (321 - C8) / k8;

line(img, point80, point81, Scalar(255, 255, 255), 1, LINE_8, 0);

//直线拟合9

fitLine(point_9, line9, DIST_L1, 0, 0.01, 0.01);

double k9 = line9[1] / line9[0];

cout << "直线斜率9:  " << k9 << endl;

double A9 = k9, B9 = -1, C9 = line9[3] - line9[2] * k9;

cout << "直线解析式:" << A9 << "x " << B9 << "y +" << C9 << " = 0 " << endl;

Point point90, point91;

point90.x = 0;

point90.y = C9;

point91.y = 321;

point91.x = (321 - C9) / k9;

line(img, point90, point91, Scalar(255, 255, 255), 1, LINE_8, 0);

//直线拟合10

fitLine(point_10, line10, DIST_L1, 0, 0.01, 0.01);

double k10 = line10[1] / line10[0];

cout << "直线斜率10:  " << k10 << endl;

double A10 = k10, B10 = -1, C10 =  line10[3] - line10[2] * k10;

cout << "直线解析式:" << A10 << "x " << B10 << "y +"<< C10 << " = 0 " << endl;

Point point100, point101;

point100.x = -C10/A10;

point100.y = 0;

point101.x = 432;

point101.y = A10 * 432 + C10;

line(img, point100, point101, Scalar(255, 255, 255), 1, LINE_8, 0);

//直线拟合11

fitLine(point_11, line11, DIST_L1, 0, 0.01, 0.01);

double k11 = line11[1] / line11[0];

cout << "直线斜率11:  " << k11 << endl;

double A11 = k11, B11 = -1, C11 = line11[3] - line11[2] * k11;

cout << "直线解析式:" << A11 << "x " << B11 << "y " << C11 << " = 0 " << endl;

Point point110, point111;

point110.x = -C11 / A11;

point110.y = 0;

point111.x = 432;

point111.y = A11 * 432 + C11;

line(img, point110, point111, Scalar(255, 255, 255), 1, LINE_8, 0);

//直线拟合12

fitLine(point_12, line12, DIST_L1, 0, 0.01, 0.01);

double k12 = line12[1] / line12[0];

cout << "直线斜率12:  " << k12 << endl;

double A12 = k12, B12 = -1, C12 = line12[3] - line12[2] * k12;

cout << "直线解析式:" << A12 << "x " << B12 << "y " << C12 << " = 0 " << endl;

Point point120, point121;

point120.x = -C12 / A12;

point120.y = 0;

point121.x = 432;

point121.y = A12 * 432 + C12;

line(img, point120, point121, Scalar(255, 255, 255), 1, LINE_8, 0);

//直线拟合13

fitLine(point_13, line13, DIST_L1, 0, 0.01, 0.01);

double k13 = line13[1] / line13[0];

cout << "直线斜率13:  " << k13 << endl;

double A13 = k13, B13 = -1, C13 = line13[3] - line13[2] * k13;

cout << "直线解析式:" << A13 << "x " << B13 << "y " << C13 << " = 0 " << endl;

Point point130, point131;

point130.x = -C13 / A13;

point130.y = 0;

point131.x = 432;

point131.y = A13 * 432 + C13;

line(img, point130, point131, Scalar(255, 255, 255), 1, LINE_8, 0);

//直线拟合14

fitLine(point_14, line14, DIST_L1, 0, 0.01, 0.01);

double k14 = line14[1] / line14[0];

cout << "直线斜率14:  " << k14 << endl;

double A14 = k14, B14 = -1, C14 = line14[3] - line14[2] * k14;

cout << "直线解析式:" << A14 << "x " << B14 << "y " << C14 << " = 0 " << endl;

Point point140, point141;

point140.x = -C14 / A14;

point140.y = 0;

point141.x = 432;

point141.y = A14 * 432 + C14;

line(img, point140, point141, Scalar(255, 255, 255), 1, LINE_8, 0);

//直线拟合15

fitLine(point_15, line15, DIST_L1, 0, 0.01, 0.01);

double k15 = line15[1] / line15[0];

cout << "直线斜率15:  " << k15 << endl;

double A15 = k15, B15 = -1, C15 = line15[3] - line15[2] * k15;

cout << "直线解析式:" << A15 << "x " << B15 << "y " << C15 << " = 0 " << endl;

Point point150, point151;

point150.x = -C15 / A15;

point150.y = 0;

point151.x = 432;

point151.y = A15 * 432 + C15;

line(img, point150, point151, Scalar(255, 255, 255), 1, LINE_8, 0);

//直线拟合16

fitLine(point_16, line16, DIST_L1, 0, 0.01, 0.01);

double k16 = line16[1] / line16[0];

cout << "直线斜率16:  " << k16 << endl;

double A16 = k16, B16 = -1, C16 = line16[3] - line16[2] * k16;

cout << "直线解析式:" << A16 << "x " << B16 << "y " << C16 << " = 0 " << endl;

Point point160, point161;

point160.x = -C16 / A16;

point160.y = 0;

point161.x = 432;

point161.y = A16 * 432 + C16;

line(img, point160, point161, Scalar(255, 255, 255), 1, LINE_8, 0);

//直线拟合17

fitLine(point_17, line17, DIST_L1, 0, 0.01, 0.01);

double k17 = line17[1] / line17[0];

cout << "直线斜率17:  " << k17 << endl;

double A17 = k17, B17 = -1, C17 = line17[3] - line17[2] * k17;

cout << "直线解析式:" << A17 << "x " << B17 << "y " << C17 << " = 0 " << endl;

Point point170, point171;

point170.x = -C17 / A17;

point170.y = 0;

point171.x = 432;

point171.y = A17 * 432 + C17;

line(img, point170, point171, Scalar(255, 255, 255), 1, LINE_8, 0);

//直线拟合18

fitLine(point_18, line18, DIST_L1, 0, 0.01, 0.01);

double k18 = line18[1] / line18[0];

cout << "直线斜率18:  " << k18 << endl;

double A18 = k18, B18 = -1, C18 = line18[3] - line18[2] * k18;

cout << "直线解析式:" << A18 << "x " << B18 << "y " << C18 << " = 0 " << endl;

Point point180, point181;

point180.x = -C18 / A18;

point180.y = 0;

point181.x = 432;

point181.y = A18 * 432 + C18;

line(img, point180, point181, Scalar(255, 255, 255), 1, LINE_8, 0);

//直线拟合19

fitLine(point_19, line19, DIST_L1, 0, 0.01, 0.01);

double k19 = line19[1] / line19[0];

cout << "直线斜率19:  " << k19 << endl;

double A19 = k19, B19 = -1, C19 = line19[3] - line19[2] * k19;

cout << "直线解析式:" << A19 << "x " << B19 << "y " << C19 << " = 0 " << endl;

Point point190, point191;

point190.x = -C19 / A19;

point190.y = 0;

point191.x = 432;

point191.y = A19 * 432 + C19;

line(img, point190, point191, Scalar(255, 255, 255), 1, LINE_8, 0);

//舍弃最大值及最小值,求斜率均值

double a[20] = { k0,k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12,k13,k14,k15,k16,k17,k18,k19 };

double sum = 0;

int num = 20;

//for 循环判断最大值和最小值

double max = a[0];

double min = a[0];

for (int i = 0; i < 20; i++)

{

if (a[i] > max)

max = a[i];

if (a[i] < min)

min = a[i];

sum += a[i];

}

cout << "max=" << max << endl;

cout << "min=" << min << endl;

cout << "sum1=" << sum << endl;

cout << "num1=" << num << endl;

//for循环去除最大值和最小值

for (int i = 0; i < 20; i++)

{

if (a[i] == max || a[i] == min)

{

sum -= a[i];

num--;

}

}

cout << "sum2=" << sum << endl;

cout << "num2=" << num << endl;

double avg = sum / num;

cout << "avg=" << avg << endl;

double b = atan(avg);            //弧度制

double c = b * 180 / 3.1415926;  //角度制

cout << "角度:" << c << endl;

double d = 90 - c;

cout << "垂线角度:" << d << endl;

double e = tan(d*3.1415926/180);

cout << "垂线斜率:" << e << endl;

//辅助线的一般直线公式

double AA = 321, BB = 218, CC = -321 * 218;

cout << "辅助直线解析式:" << AA<< "x +" << BB << "y " << CC << " = 0 " << endl;

//直线绘制

line(img,Point(0,321), Point(218,0),Scalar(255,255,255),1,LINE_8,0);

imshow("辅助线绘制", img);

//求取直线交点

double A[20] = { A0,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17,A18,A19 };

double B[20] = { B0,B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,B13,B14,B15,B16,B17,B18,B19 };

double C[20] = { C0,C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15,C16,C17,C18,C19 };

double D[20], x[20], y[20];

for (int i = 0; i < 20; i++)

{

D[i] = A[i] * BB - AA * B[i];

x[i] = (B[i] * CC - BB * C[i]) / D[i];

y[i] = (AA * C[i] - A[i] * CC) / D[i];

cout << "交点坐标:" << x[i] << "," << y[i] << endl;

}

//x从小到大排列数组

double tempx;

double tempy;

for (int i = 1; i < 20; i++)

{

for (int j = i - 1; j >= 0; j--)

{

if (x[j + 1] < x[j])

{

tempx = x[j];

x[j] = x[j + 1];

x[j + 1] = tempx;

}

else break;

}

}

for (int i = 0; i < 20; i++)

{

cout << x[i] << endl;

}

//y从大到小排列数组

for (int i = 1; i < 20; i++)

{

for (int j = i - 1; j >= 0; j--)

{

if (y[j + 1] > y[j])

{

tempy = y[j];

y[j] = y[j + 1];

y[j + 1] = tempy;

}

else break;

}

}

for (int i = 0; i < 20; i++)

{

cout <<"排列后的交点坐标"<<x[i]<<","<< y[i] << endl;

}

//计算距离

double dis[18];

for (int i = 0; i < 18; i++)

{

int j = i + 2;

dis[i] = sqrt(pow((x[j] - x[i]),2) + pow((y[j] - y[i]),2));//pow平方,sqrt开平方

}

for (int i = 0; i < 18; i++)

{

cout << dis[i] << endl;

}

//去掉距离最大值、最小值,求平均

double sum_dis = 0;

//for 循环判断最大值和最小值

double max_dis = dis[0];

double min_dis = dis[0];

for (int i = 0; i < 18; i++)

{

if (dis[i] > max_dis)

max_dis = dis[i];

if (dis[i] < min_dis)

min_dis = dis[i];

sum_dis += dis[i];

}

cout << "max=" << max_dis << endl;

cout << "min=" << min_dis << endl;

cout << "sum1=" << sum_dis << endl;

//for循环去除最大值和最小值

for (int i = 0; i < 18; i++)

{

if (dis[i] == max_dis || dis[i] == min_dis)

{

sum_dis -= dis[i];

}

}

double avg_dis = sum_dis / 16;

cout << "莫尔条纹间距总和为: " << sum_dis << endl;

cout << "莫尔条纹间距为: " << avg_dis << endl;

/*//霍夫直线检测

vector<Vec4i> lines1, lines2;

HoughLinesP(edge, lines1, 5, CV_PI / 180.0, 150, 100, 1000);

HoughLinesP(edge, lines2, 5, CV_PI / 180.0, 150, 30, 30);

Mat img1, img2;

edge.copyTo(img1);

edge.copyTo(img2);

drawLine(img1, lines1, edge.rows, edge.cols, Scalar(255), 1);

drawLine(img2, lines2, edge.rows, edge.cols, Scalar(255), 1);

imshow("img1", img1);

imshow("img2", img2);*/

waitKey(0);

return 0;

}

这篇关于莫尔条纹--处理及分析 C++的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/329635

相关文章

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea

Python结合requests和Cheerio处理网页内容的操作步骤

《Python结合requests和Cheerio处理网页内容的操作步骤》Python因其简洁明了的语法和强大的库支持,成为了编写爬虫程序的首选语言之一,requests库是Python中用于发送HT... 目录一、前言二、环境搭建三、requests库的基本使用四、Cheerio库的基本使用五、结合req

使用Python处理CSV和Excel文件的操作方法

《使用Python处理CSV和Excel文件的操作方法》在数据分析、自动化和日常开发中,CSV和Excel文件是非常常见的数据存储格式,ython提供了强大的工具来读取、编辑和保存这两种文件,满足从基... 目录1. CSV 文件概述和处理方法1.1 CSV 文件格式的基本介绍1.2 使用 python 内

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规