Noisy Channel模型纠正单词拼写错误

2023-11-02 08:50

本文主要是介绍Noisy Channel模型纠正单词拼写错误,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文介绍 Stanford《From Languages to Information》课程中讲到的 单词拼写错误 纠正。背后的数学原理主要是贝叶斯公式。单词拼写错误纠正主要涉及到两个模型:一个是Nosiy Channel模型,它是贝叶斯公式中的似然函数;另一个模型是Language Model,它是贝叶斯公式中的先验概率。

 

一,问题描述

在这句话中“. . . was called a “stellar and versatile acress whose combination of sass and glamour has defined her. . .”,有一个错误的单词:acress 

这个错误单词 acress 对应的 正确单词是哪个呢?是 actress? 还是cress?还是 caress?……

 

二,出现单词拼写错误的情形

一种是 Non-word spelling errors,它是指:错误的单词 不存在 于词典中。也就说,你键盘输入了一个单词,而这个单词根本没有被英文词典收录,在字典中查不到。比如你将 正确的单词graffe,多打了一个字符 i ,变成了 giraffe,而 英文字典中根本没有 giraffe这个单词。

另一种是 real-word errors,比如:想输入 there are,结果输入成了 three are。而错误单词 three 是存在于字典中的,关键问题是:怎么知道将 three 改成 there 呢?

 

三,单词拼写错误的纠正步骤

①首先检测出 是哪个单词发生了拼写错误。

这可以通过查字典来实现,比如依次扫描每个单词,若该单词不在词典中(未被词典收录),则认为它是一个拼写错误的单词。显然,词典越大,词典收录的单词越多,我们就越能正确检测出错误的单词。

②其次,是要从一组候选的 正确单词中,选择一个“最准确”的单词,而这个“最准确”的单词,就是要找的结果(错误单词 对应的 正确单词)。 

这里有个问题就是:如何找出一组候选的正确单词呢?这就需要根据实际情况进行分析了。以上面提到的错误单词 acress 为例:

本来想输入“across”,但是一不小心将 'o',输入成了'e',结果变成了 "acress", 这是substition 操作:将 'o' 替换成了 'e'

本来想输入 "actress",但是打字太快,漏打了 't',结果变成了"acress",这是deletion操作:删除了 't'

.....

或者说:键盘上字符'm' 和 'n' 很近,打字时,很容易将 'm'替换成了'n';又或者说:'m' 和 'n'发音相似,也导致经常将 'm' 替换成 'n' 

而寻找一组候选单词,就可以通过“编辑距离算法”来实现。关于编辑距离,可参考“Damerau-Levenshtein Edit Distance”或者:最短编辑距离算法实现

四,贝叶斯推断 纠正 单词拼写错误

①Noisy Channel Model

Noisy Channel Model的示意图如下:

原来的一个正确的单词:经过 noisy channel ,结果变成了一个 noisy word。而这个noisy channel,其实就是前面讲的“两个词发音相近,容易拼错它们",或者"两个字符在键盘上相邻,输入时就会错误地将一个词 输入成了(type) 另一个词。(其实niosy channel就是对现实世界存在的问题的一个建模)

而要想得出错误单词(noisy word) 对应的 正确单词,就需要用到贝叶斯推断。具体原理如下:

既然 noisy word (或者说错误单词,记为 x )已经出现了,那么我们在词典中找一个单词w,在 x 已经出现的条件下,最有可能是由 哪个单词w 造成的?

We see an observation x (a misspelled word) and our job is to find the word w that generated this misspelled word
Out of all possible words in the vocabulary V we want to find the
word w such that P(w|x) is highest. We use the hat notation ˆ to mean “our estimate
of the correct word”.

 

用公式(1)表示如下:

(公式1)

V是词典(Vocabulary),p(w|x)表示:从V中选出一个w,计算概率 P(w|x),概率最大的那个 w,就是 错误单词x 对应的正确单词,将该正确单词记为: wˆ

 根据贝叶斯公式法则(公式2):

将公式(1)变成如下形式:

(公式3)

 

从公式3 可以看出:就是对于 词典V 中的每个单词w,计算 [p(x|w)*p(w)]/p(x),找出 计算结果最大(概率最大) 的那个 w,该 w 就是最优解 wˆ 

而在这个计算过程中,可以不需要计算分母p(x),因为这不影响我们 找出 概率最大的那个 w 。因此将 p(x) 视为一个常量值。(这里关于贝叶斯的理解,可参考后面给出的参考文献)

于是我们的公式就变成了:

(公式4)

可以看出,公式4 由两部分组成,一部分是 p(x|w),我们称之为 channel model 或者 称为 error model,它就是似然函数

另一部分是 p(w) 我们称之为先验概率(prior)。

另外,值得一提的是这个Vocabulary V,由于Vocabulary中单词个数是很多的,只有在发生某种”条件“的情况下,一个单词才会被误拼写成了另一个单词。换句话说,Vocabulary中的某些词与错误单词 x 之间是”八杆子打不着“的关系,因此我们只在某些Candidate words 中 寻找 [p(x|w)*p(w)] 的那个 w

而这些Candidate words 就是由前面提到的”编辑距离算法“生成。因此,公式可继续变成(注意 argmax 的下标的变化。V变成了C,而C就是 Candidate words的集合)

因此,现在的问题变成了:如何求出channel model 和 prior呢?

首先介绍下先验概率p(w)的求解(Prior)

我们使用 unigram language model 来作为 p(w)。这里解释一下 unigram language model:

选择一个语料库(词库),这个语料库里面总共有 404253213个单词,然后”编辑距离“算法 根据 错误的单词 acress 生成了一系列的候选词(Candidate words),每一个候选词在语料库中出现的次数count(candidate word) 除以 404253213 就是每个Candidate word的先验概率。如下图所示,第一列是错误单词acress的 候选词,第二列是这些候选词在语料库中出现的次数,第三列是这些候选词在语料库中出现的概率(频率)

For this example let’s start in the following table by assuming a unigram language model. We computed the language model from the
404,253,213 words in the Corpus of Contemporary English (COCA).

 

接下来是求解 channel model

个人理解就是:求解channel model需要用到日常生活中用到的知识经验,或者行业应用中累积下来的数据(经验)。

从公式:p(x|w)理解上来看,给定一个正确的候选单词 w 的条件下,导致错误单词x 的概率有多大?

如果我们收集了足够多的数据,比如观察了很多用户一共输入了(打字)1万次 w,其中有10次 输入成了x(打字打成了 x),那么 p(x|w)=0.0001

我们考虑四种出错情况:

del[x,y] 表示,输入 xy 时,少打了字符 'y',结果变成了 x,那么最终得到的单词是一个错误的单词,记录下这种情况下出错的总次数 count(xy typed as x)

trans[x,y]表示,输入 xy 时,输入反了,变成了 yx,那么最终得到的单词是一个错误的单词,记录下这种情况下出错的总次数 count(xy typed as yx)

把这些数据统计起来,放在一个表里面,这个表称为:confusion matrix

比如这个网站(Corpora of misspellings for download)就有一系列的”错误单词的统计数据“。

("错误单词" 示意图)

 

那么根据 confusion matrix,就能计算 似然函数的概率了(也即能求解 channel model 了)

解释一下 if transposition情况:

count[wi wi+1]表示:含有 wi wi+1 字符的所有单词w 的个数;trans[wi ,wi+1 ] 表示,将 wi 与 wi+1 交换的次数。(将wi 与 wi+1  交换后,就变成了一个错误的单词了)

另一种计算 confusion matrix 的方法是 EM算法,这个我也没学,不懂,就不说了。

对于错误的单词 acress,根据下面的7个候选单词计算出来的似然概率如下图:

上图中,第一行表示,其中一个正确的候选单词是 actress,正确的单词是 t,由于某种原因(键盘输入太快了,漏打了t,本来是输入ct 的,结果输入成了c ),统计到的这种情形出现的概率是0.000117 。这种原因,其实就是一个deleteion操作而导致的错误。

现在计算出了 似然概率,也计算出了先验概率,二者相乘:p(x|w)*p(w),就得出了正确的候选单词 actress 由于deletion 操作导致 得到错误单词 acress 的概率是 0.000117

同理,计算其它的候选单词 cress、caress、access……的 p(x|w)*p(w)概率,比较一下,哪个概率最大,从上图中看出:across 对应的概率最大,也就是说:应该将 acress 纠正为:across 

 

但是,事实上,从句子”“的意思来看,acress 应该纠正为 actress 更为合理。那上而的channel model 为什么没有给出正确的纠正结果呢?

主要原因是:先验概率是由 unigram language model 得出的,如果采用 bigram language model,那么就能够正确地找出”actress“,从而将acress纠正为actress

下面是使用Contemporary American English语料库训练得到的二元Language Model。对于单词w:actress 和 across,它给出的先验概率p(w)如下:

 

actress对应的先验概率:p(actress)=p("versatile actress whose")=0.000021*0.0010

across对应的先验概率:p(across)=1*10-10

这样,再将先验概率和似然概率相乘,就能得到正确的单词应该是”actress“,而不是”across“了。

 

参考文章:

Natural Language Corpus Data: Beautiful Data

Corpora of misspellings for download

 

理解贝叶斯公式的一系列文章 或者 推荐《A first course in machine learning 》这本书

机器学习中的贝叶斯方法---先验概率、似然函数、后验概率的理解及如何使用贝叶斯进行模型预测(1)

机器学习中的贝叶斯方法---先验概率、似然函数、后验概率的理解及如何使用贝叶斯进行模型预测(2)

使用最大似然法来求解线性模型(2)-为什么是最大化似然函数?

使用最大似然法来求解线性模型(3)-求解似然函数

使用最大似然法来求解线性模型(4)-最大化似然函数背后的数学原理

 

 NLP里面的一些基本概念

 

原文:http://www.cnblogs.com/hapjin/p/8012069.html

转载于:https://www.cnblogs.com/hapjin/p/8012069.html

这篇关于Noisy Channel模型纠正单词拼写错误的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/329475

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号