模糊C均值聚类(FCM)python

2023-11-02 04:36
文章标签 python 模糊 聚类 均值 fcm

本文主要是介绍模糊C均值聚类(FCM)python,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、模糊C均值聚类的原理 

二、不使用skfuzzy的python代码

三、 使用skfuzzy的python代码


一、模糊C均值聚类的原理 

 

二、不使用skfuzzy的python代码

import numpy as np
import random
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False'''初始化隶属矩阵'''
def initial_u0(n,K):''':param n:样本数量:param K:簇的数量:return: 初始化的隶属矩阵'''u0=np.zeros((K,n))for i in range(K):for j in range(n):if i==0:u0[i][j]=random.uniform(0,1)elif i<K-1:s=0for k in range(i):s=s+u0[k][j]u0[i][j]=random.uniform(0,1-s)else:s=0for k in range(i):s=s+u0[k][j]u0[i][j]=1-sreturn u0'''聚类函数'''
def Cluster(U,n):''':param U:隶属度矩阵:param n: 样本数量:return: 聚类结果'''cluster=[]for i in range(n):A=U.T[i].tolist()a=A.index(max(A))cluster.append(int(a))return cluster'''计算隶属中心矩阵'''
def center(data,U,m,n,K,dim):''':param data:样本数据:param U: 隶属度矩阵:param m: 模糊加权参数,一般取2:param n: 样本数量:param K: 聚类数目:param dim: 维度:return: 隶属中心矩阵''''''进行初始聚类'''cluster=Cluster(U,n)'''初始化隶属中心矩阵'''Z=np.zeros((K,dim))'''计算隶属中心矩阵'''#初始化u_x=[np.zeros((1,dim)) for i in range(K)]u=[0 for i in range(K)]#计算for i in range(n):c=cluster[i]  #类别u[c]=u[c]+(U[c][i])**mu_x[c]=u_x[c]+((U[c][i])**m)*data[i]for i in range(K):Z[i]=u_x[i]/u[i]'''返回隶属中心矩阵'''return Z'''基于欧氏距离计算各点到聚类中心的距离矩阵'''
def distinct(data,n,dim,Z,K):''':param data:样本数据:param n: 样本数量:param dim: 数据维度:param Z: 隶属中心矩阵:param K: 聚类数目:return: 基于欧氏距离的距离矩阵''''''初始化距离矩阵'''D=np.zeros((K,n))'''计算欧式距离'''for i in range(K):for j in range(n):z=Z[i]   #隶属中心df=data[j]  #数据点df_z=df-zd=0for k in range(dim):d=d+(df_z[k])**2d=np.sqrt(d)D[i][j]=d'''返回距离矩阵'''return D'''定义目标函数并返回目标函数值'''
def function(data,Z,n,dim,K,U,m,D):''':param data:样本数据:param Z: 隶属中心矩阵:param n: 样本数量:param dim: 数据维度:param K: 聚类数目:param U: 隶属度矩阵:param m: 模糊加权参数:param D: 距离矩阵:return: 目标函数值''''''初始化聚类'''cluster=Cluster(U,n)'''计算目标函数值'''J=0    #目标函数值W=[0 for i in range(K)]for i in range(n):c=cluster[i]  #聚类类别df=data[i]    #数据点z=Z[c]        #聚类中心d=D[c][i]     #数据点到聚类中心的距离u=U[c][i]     #隶属度W[c]=W[c]+(u**m)*(d**2)J=sum(W)'''返回目标函数值'''return J'''更新隶属度矩阵'''
def update_U(data,Z,n,dim,K,D,m):''':param data:样本数据:param Z: 隶属中心矩阵:param n: 样本数量:param dim: 数据维度:param K: 聚类数目:param D: 距离矩阵:param m: 模糊加权参数:return: 更新后的隶属度矩阵''''''初始化隶属度矩阵'''U=np.zeros((K,n))'''更新隶属度矩阵'''for i in range(K):for j in range(n):r=0for k in range(K):r=r+(D[i][j]/D[k][j])**(2/(m-1))U[i][j]=1/r'''返回更新后的隶属度矩阵'''return U'''模糊C均值聚类函数'''
def FCM(data,K,Tmax,m,error):''':param data:样本数据:param K: 聚类数目:param Tmax: 最大迭代步数:param m: 模糊加权参数:param error: 迭代停止阈值,一般取0.001至0.01:return: 聚类结果''''''样本数量'''n=data.shape[0]'''数据维度'''dim=data.shape[1]'''初始化隶属度矩阵'''U0=initial_u0(n,K)U=U0.copy()'''存储目标函数值'''J=[]'''循环'''for i in range(Tmax):#计算隶属中心矩阵Z=center(data,U,m,n,K,dim)#基于欧氏距离计算各点到聚类中心的距离矩阵D=distinct(data,n,dim,Z,K)#计算目标函数的值J.append(function(data,Z,n,dim,K,U,m,D))#更新隶属度矩阵U=update_U(data,Z,n,dim,K,D,m)#判断阈值if i!=0 and abs(J[i-1]-J[i])<=error:break'''得到聚类结果'''cluster=Cluster(U,n)'''返回聚类结果(聚类类别,聚类中心,目标函数值)'''return cluster,Z,J[-1]'''主函数'''
if __name__=="__main__":'''随机产生400组在区间[0,1]上的二维数据'''data=np.array([[random.uniform(0, 1) for i in range(2)] for j in range(400)])'''聚类'''cluster,cntr,J=FCM(data,K=4,Tmax=1000,m=2,error=0.0001)print("聚类结果:\n{}".format(cluster))print("目标函数值:\n{}".format(J))#将数据分类fdata=data.tolist()X1=[]Y1=[]X2=[]Y2=[]X3=[]Y3=[]X4=[]Y4=[]for i in range(400):if cluster[i]==0:X1.append(fdata[i][0])Y1.append(fdata[i][1])if cluster[i]==1:X2.append(fdata[i][0])Y2.append(fdata[i][1])if cluster[i]==2:X3.append(fdata[i][0])Y3.append(fdata[i][1])if cluster[i]==3:X4.append(fdata[i][0])Y4.append(fdata[i][1])# 聚类图plt.scatter(X1, Y1, c='red', marker='o')plt.scatter([cntr[0][0]], [cntr[0][1]], marker='>', c="black", label='聚类中心1')plt.scatter(X2, Y2, c='blue', marker="o")plt.scatter([cntr[1][0]], [cntr[1][1]], marker='<', c="black", label="聚类中心2")plt.scatter(X3, Y3, c='green', marker="o")plt.scatter([cntr[2][0]], [cntr[2][1]], marker='^', c="black", label="聚类中心3")plt.scatter(X4, Y4, c='orange', marker="o")plt.scatter([cntr[3][0]], [cntr[3][1]], marker="D", c="black", label="聚类中心4")plt.legend()plt.xlabel("x")plt.ylabel("y")plt.title("聚类图")plt.show()

三、 使用skfuzzy的python代码

import numpy as np
import random
import skfuzzy as fuzz
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False'''随机产生400组在区间[0,1]上的二维数据'''
data = np.array([[random.uniform(0,1) for i in range(2)] for j in range(400)])'''初始化隶属度矩阵(聚成4类)'''
'''
cntr:聚类中心
u:最后的隶属度矩阵
u0:初始化的隶属度矩阵
d:是一个矩阵,记录每一个点到聚类中心的欧式距离
jm:是目标函数的优化历史
p:p是迭代的次数
fpc:全称是fuzzy partition coefficient, 是一个评价分类好坏的指标,它的范围是0到1, 1表示效果最好,后面可以通过它来选择聚类的个数。
'''
cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans(data.T, 4, 2, error=0.0001, maxiter=1000)'''迭代计算'''
cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans(data.T, 4,2, error=0.0001, maxiter=1000)'''获得聚类结果'''
cluster_membership = np.argmax(u, axis=0)'''绘制聚类结果'''
#将数据分类
fdata=data.tolist()
X1=[]
Y1=[]
X2=[]
Y2=[]
X3=[]
Y3=[]
X4=[]
Y4=[]
for i in range(400):if cluster_membership[i]==0:X1.append(fdata[i][0])Y1.append(fdata[i][1])if cluster_membership[i]==1:X2.append(fdata[i][0])Y2.append(fdata[i][1])if cluster_membership[i]==2:X3.append(fdata[i][0])Y3.append(fdata[i][1])if cluster_membership[i]==3:X4.append(fdata[i][0])Y4.append(fdata[i][1])#聚类图
plt.scatter(X1,Y1,c='red',marker='o')
plt.scatter([cntr[0][0]],[cntr[0][1]],marker='>',c="black",label='聚类中心1')
plt.scatter(X2,Y2,c='blue',marker="o")
plt.scatter([cntr[1][0]],[cntr[1][1]],marker='<',c="black",label="聚类中心2")
plt.scatter(X3,Y3,c='green',marker="o")
plt.scatter([cntr[2][0]],[cntr[2][1]],marker='^',c="black",label="聚类中心3")
plt.scatter(X4,Y4,c='orange',marker="o")
plt.scatter([cntr[3][0]],[cntr[3][1]],marker="D",c="black",label="聚类中心4")
plt.legend()
plt.xlabel("x")
plt.ylabel("y")
plt.title("聚类图")
plt.show()print(cluster_membership)
'''
print("cntr:\n{}".format(cntr))
print("u:\n{}".format(u))
print("u0:\n{}".format(u0))
print("d:\n{}".format(d))
print("jm:\n{}".format(jm))
print("p:\n{}".format(p))
print("fpc:\n{}".format(fpc))
'''

这篇关于模糊C均值聚类(FCM)python的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/328150

相关文章

基于Python打造一个可视化FTP服务器

《基于Python打造一个可视化FTP服务器》在日常办公和团队协作中,文件共享是一个不可或缺的需求,所以本文将使用Python+Tkinter+pyftpdlib开发一款可视化FTP服务器,有需要的小... 目录1. 概述2. 功能介绍3. 如何使用4. 代码解析5. 运行效果6.相关源码7. 总结与展望1

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

Mybatis 传参与排序模糊查询功能实现

《Mybatis传参与排序模糊查询功能实现》:本文主要介绍Mybatis传参与排序模糊查询功能实现,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、#{ }和${ }传参的区别二、排序三、like查询四、数据库连接池五、mysql 开发企业规范一、#{ }和${ }传参的

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.