Kafka保证百万级数据写入和重发问题

2023-11-02 03:20

本文主要是介绍Kafka保证百万级数据写入和重发问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Kafka作为当下流行的高并发消息中间件,大量用于数据采集,实时处理等场景,
那么它如何做到百万级写入速度呢?我们在享受它带来的高并发,高可靠等便利时,同时不得不面对可能存在的问题,项目中最常见的就是丢包,重发问题,这些问题在项目中又如何解决呢?下面让我们一点点揭开。

一、如何保证百万级写入速度

1、页缓存技术 + 磁盘顺序写

首先Kafka每次接收到数据都会往磁盘上去写,如下图所示。
那么在这里我们不禁有一个疑问了,如果把数据基于磁盘来存储,频繁的往磁盘文件里写数据,这个性能会不会很差?大家肯定都觉得磁盘写性能是极差的。
在这里插入图片描述

没错,要是真的跟上面那个图那么简单的话,那确实这个性能是比较差的。

  • 但是实际上Kafka在这里有极为优秀和出色的设计,就是为了保证数据写入性能,首先Kafka是基于操作系统的页缓存来实现文件写入的。
    操作系统本身有一层缓存,叫做page cache,是在内存里的缓存,我们也可以称之为os cache,意思就是操作系统自己管理的缓存
    你在写入磁盘文件的时候,可以直接写入这个os cache里,也就是仅仅写入内存中,接下来由操作系统自己决定什么时候把os cache里的数据真的刷入磁盘文件中。
    仅仅这一个步骤,就可以将磁盘文件写性能提升很多了,因为其实这里相当于是在写内存,不是在写磁盘,大家看下图。

在这里插入图片描述

  • 接着另外一个就是kafka写数据的时候,非常关键的一点,他是以磁盘顺序写的方式来写的。也就是说,仅仅将数据追加到文件的末尾,不是在文件的随机位置来修改数据。
    普通的机械磁盘如果你要是随机写的话,确实性能极差,也就是随便找到文件的某个位置来写数据。
    但是如果你是追加文件末尾按照顺序的方式来写数据的话,那么这种磁盘顺序写的性能基本上可以跟写内存的性能本身也是差不多的。
    所以大家就知道了,上面那个图里,Kafka在写数据的时候,一方面基于了os层面的page cache来写数据,所以性能很高,本质就是在写内存罢了
    另外一个,他是采用磁盘顺序写的方式,所以即使数据刷入磁盘的时候,性能也是极高的,也跟写内存是差不多的。基于上面两点,kafka就实现了写入数据的超高性能。
    那么大家想想,假如说kafka写入一条数据要耗费1毫秒的时间,那么是不是每秒就是可以写入1000条数据?
    但是假如kafka的性能极高,写入一条数据仅仅耗费0.01毫秒呢?那么每秒是不是就可以写入10万条数?
    所以要保证每秒写入几万甚至几十万条数据的核心点,就是尽最大可能提升每条数据写入的性能,这样就可以在单位时间内写入更多的数据量,提升吞吐量。

2、零拷贝技术

说完了写入这块,再来谈谈消费这块。
大家应该都知道,从Kafka里我们经常要消费数据,那么消费的时候实际上就是要从kafka的磁盘文件里读取某条数据然后发送给下游的消费者,如下图所示。
那么这里如果频繁的从磁盘读数据然后发给消费者,性能瓶颈在哪里呢
在这里插入图片描述
假设要是kafka什么优化都不做
假设要是kafka什么优化都不做,就是很简单的从磁盘读数据发送给下游的消费者,那么大概过程如下所示:

  1. 先看看要读的数据在不在os cache里,如果不在的话就从磁盘文件里读取数据后放入os cache。
  2. 接着从操作系统的os cache里拷贝数据到应用程序进程的缓存里
  3. 再从应用程序进程的缓存里拷贝数据到操作系统层面的Socket缓存里,
  4. 最后从Socket缓存里提取数据后发送到网卡,最后发送出去给下游消费。
    整个过程,如下图所示:

在这里插入图片描述

大家看上图,很明显可以看到有两次没必要的拷贝吧!
一次是从操作系统的cache里拷贝到应用进程的缓存里,接着又从应用程序缓存里拷贝回操作系统的Socket缓存里。而且为了进行这两次拷贝,中间还发生了好几次上下文切换,一会儿是应用程序在执行,一会儿上下文切换到操作系统来执行。所以这种方式来读取数据是比较消耗性能的。

Kafka为了解决这个问题,在读数据的时候是引入零拷贝技术。
也就是说,直接让操作系统的cache中的数据发送到网卡后传输给下游的消费者,中间跳过了两次拷贝数据的步骤,Socket缓存中仅仅会拷贝一个描述符过去,不会拷贝数据到Socket缓存
大家看下图,体会一下这个精妙的过程:
在这里插入图片描述

通过零拷贝技术,就不需要把os cache里的数据拷贝到应用缓存,再从应用缓存拷贝到Socket缓存了,两次拷贝都省略了,所以叫做零拷贝

Socket缓存仅仅就是拷贝数据的描述符过去,然后数据就直接从os cache中发送到网卡上去了,这个过程大大的提升了数据消费时读取文件数据的性能。
而且大家会注意到,在从磁盘读数据的时候,会先看看os cache内存中是否有,如果有的话,其实读数据都是直接读内存的。

如果kafka集群经过良好的调优,大家会发现大量的数据都是直接写入os cache中,然后读数据的时候也是从os cache中读。
相当于是Kafka完全基于内存提供数据的写和读了,所以这个整体性能会极其的高。
说个题外话,下回有机会给大家说一下Elasticsearch的架构原理,其实ES底层也是大量基于os cache实现了海量数据的高性能检索的,跟Kafka原理类似。
因此kafka底层的页缓存技术的使用,磁盘顺序写的思路,以及零拷贝技术的运用,做到每秒几十万的吞吐量。

二、项目中丢包和重发问题解决

1. 丢包问题

1.1 问题描述

所谓丢包一般是指发送方发送的数据未到达接收方. 常见的丢包可能发生在发送端, 网络,接收端.例如,消息推送服务,每天早上,手机上各终端都会给用户推送消息,这时候流量剧增,可能会出现kafka发送数据过快,导致服务器网卡爆满,或者磁盘处于繁忙状态,可能会出现丢包现象。

1.2 问题解决

解决方案:

  1. 对kafka进行限速,平滑流量
  2. 启用重试机制,重试间隔时间设置长一些
  3. Kafka设置acks=all,即需要相应的所有处于ISR的分区都确认收到该消息后,才算发送成功。
    检测方法:使用重放机制,查看问题所在。

2.重发问题

2.1 问题描述

重发问题:当消费者重新分配partition的时候,可能出现从头开始消费的情况,导致重发问题。当消费者消费的速度很慢的时候,可能在一个session周期内还未完成,导致心跳机制检测报告出问题。

问题场景:
  1. 设置offset为自动提交,正在消费数据,kill消费者线程;
  2. 设置offset为自动提交,关闭kafka时,如果在close之前,调用 consumer.unsubscribe() 则有可能部分offset没提交,下次重启会重复消费;
  3. 消费kafka与业务逻辑在一个线程中处理,可能出现消费程序业务处理逻辑阻塞超时,导致一个周期内,offset还未提交;继而重复消费,但是业务逻辑可能采用发送kafka或者其他无法回滚的方式;

2.2 问题分析

底层根本原因:已经消费了数据,但是offset没提交。
配置问题:设置了offset自动提交
重复消费最常见的情况:re-balance问题,通常会遇到消费的数据,处理很耗时,导致超过了Kafka的session timeout时间(0.10.x版本默认是30秒),那么就会re-balance重平衡,此时有一定几率offset没提交,会导致重平衡后重复消费。

2.3 问题解决

解决办法:至少成功发送一次+去重操作(幂等性)

2.3.1 如何保证至少成功发送一次

保证不丢失消息:
生产者(ack=all 代表至少成功发送一次)
消费者 (offset手动提交,业务逻辑成功处理后,提交offset)

2.3.2 去重操作(幂等性)
  • 去重问题:消息可以使用唯一id标识
  • 保证不重复消费:落表(主键或者唯一索引的方式,避免重复数据)
    业务逻辑处理(选择唯一主键存储到Redis或者mongdb中,先查询是否存在,若存在则不处理;若不存在,先插入Redis或Mongdb,再进行业务逻辑处理)

这篇关于Kafka保证百万级数据写入和重发问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/327733

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监