day57--动态规划15

2023-11-02 00:04
文章标签 动态 规划 15 day57

本文主要是介绍day57--动态规划15,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  •  392.判断子序列 
  •  115.不同的子序列  

第一题:判断子序列

给定字符串 s 和 t ,判断 s 是否为 t 的子序列。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列,而"aec"不是)。

示例 1:

  • 输入:s = "abc", t = "ahbgdc"
  • 输出:true

1、动态规划五部曲

(1)确定dp数组以及下标的含义

dp[i][j]表示以下标i-1为结尾的字符串s,和下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]

(2)确定递推公式

if(s[i-1]==t[j-1]) 

t中找到了一个字符在s中也出现了

if(s[i-1]!=t[j-1])

相当于当前对应元素不相同,t需要删除元素,跳到下一个元素进行匹配

if(s[i-1]==t[j-1]) 那么dp[i][j]=dp[i-1][j-1] +1;  在上一次满足条件的长度情况下加1

if(s[i-1]!=t[j-1])  此时t要删除元素,t如果把当前元素t[j-1]删除,那么dp[i][j]的数值就是看s[i-1]和t[j-2]的比较结果,即dp[i][j]=dp[i][j-1]

(3)dp数组如何初始化

 dp[i][0]肯定是没有匹配成功的值,所以为0

同理,dp[0][j]也为0

(4)确定遍历顺序

dp[i][j]依赖于dp[i-1][j-1]和dp[i][j-1],所以从前到后遍历,先遍历s数组,然后遍历t数组

(5)举例推导

第二题:不同的子序列

给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。

字符串的一个 子序列 是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。(例如,"ACE" 是 "ABCDE" 的一个子序列,而 "AEC" 不是)

题目数据保证答案符合 32 位带符号整数范围。

0、问题是问在字符串s中有多少种取出字符串t的方法

动态规划五部曲:

(1)确定dp数组以及下标的含义

dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]

(2)确定递推公式

s[i-1]与t[j-1]相等

s[i-1]与t[j-1]不相等

情况一:dp[i][j]=dp[i-1][j-1]+dp[i-1][j]

情况二:dp[i][j]=dp[i-1][j]  ,也就是等于以i-2为结尾的s子序列中出现j-1为结尾的t序列的个数

(3)dp数组初始化

dp[i][0]和dp[0][j]需要进行初始化

dp[i][0] 表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。

那么dp[i][0]一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。

再来看dp[0][j],dp[0][j]:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。

那么dp[0][j]一定都是0,s如论如何也变成不了t。

最后就要看一个特殊位置了,即:dp[0][0] 应该是多少。

dp[0][0]应该是1,空字符串s,可以删除0个元素,变成空字符串t。

(4)确定遍历顺序

dp[i][j]=dp[i-1][j-1]+dp[i-1][j]或者dp[i][j]=dp[i-1][j]都是根据左上方和右上方推导出来

外层遍历s数组,内层遍历t数组

(5)举例推导

int numDistinct(string s, string t) {vector<vector<uint64_t>> dp(s.size()+1,vector<uint64_t> (t.size()+1));for(int i=0;i<s.size();i++) dp[i][0]=1;for(int j=1;j<t.size();j++) dp[0][j]=0;for(int i=1;i<=s.size();i++){for(int j=1;j<=t.size();j++){if(s[i-1]==t[j-1]){dp[i][j]=dp[i-1][j-1]+dp[i-1][j];}else {dp[i][j]=dp[i-1][j];}}}return dp[s.size()][t.size()];}

这篇关于day57--动态规划15的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/326715

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

软考系统规划与管理师考试证书含金量高吗?

2024年软考系统规划与管理师考试报名时间节点: 报名时间:2024年上半年软考将于3月中旬陆续开始报名 考试时间:上半年5月25日到28日,下半年11月9日到12日 分数线:所有科目成绩均须达到45分以上(包括45分)方可通过考试 成绩查询:可在“中国计算机技术职业资格网”上查询软考成绩 出成绩时间:预计在11月左右 证书领取时间:一般在考试成绩公布后3~4个月,各地领取时间有所不同

poj 2976 分数规划二分贪心(部分对总体的贡献度) poj 3111

poj 2976: 题意: 在n场考试中,每场考试共有b题,答对的题目有a题。 允许去掉k场考试,求能达到的最高正确率是多少。 解析: 假设已知准确率为x,则每场考试对于准确率的贡献值为: a - b * x,将贡献值大的排序排在前面舍弃掉后k个。 然后二分x就行了。 代码: #include <iostream>#include <cstdio>#incl

代码随想录冲冲冲 Day39 动态规划Part7

198. 打家劫舍 dp数组的意义是在第i位的时候偷的最大钱数是多少 如果nums的size为0 总价值当然就是0 如果nums的size为1 总价值是nums[0] 遍历顺序就是从小到大遍历 之后是递推公式 对于dp[i]的最大价值来说有两种可能 1.偷第i个 那么最大价值就是dp[i-2]+nums[i] 2.不偷第i个 那么价值就是dp[i-1] 之后取这两个的最大值就是d

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

轨迹规划-B样条

B样条究竟是干啥的?白话就是给出一堆点,用样条的方式,给这些点连接起来,并保证丝滑的。 同时B样条分为准均匀和非均匀,以下为准均匀为例。 参考链接1:https://zhuanlan.zhihu.com/p/50626506https://zhuanlan.zhihu.com/p/50626506 参考链接2: https://zhuanlan.zhihu.com/p/536470972h

PMBOK® 第六版 规划进度管理

目录 读后感—PMBOK第六版 目录 规划进度管理主要关注为整个项目期间的进度管理提供指南和方向。以下是两个案例,展示了进度管理中的复杂性和潜在的冲突: 案例一:近期,一个长期合作的客户因政策要求,急需我们为多家医院升级一个小功能。在这个过程中出现了三个主要问题: 在双方确认接口协议后,客户私自修改接口并未通知我们,直到催进度时才发现这个问题关于UI设计的部分,后台开发人员未将其传递给