机器学习之逻辑回归实践:购买意向预测与其他预测

2023-11-01 22:10

本文主要是介绍机器学习之逻辑回归实践:购买意向预测与其他预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

逻辑回归的主要用途有预测(如预测用户购买意向)、判别(如判别某人是否会患胃癌)等。

今天使用逻辑回归做了个购买意向的预测。

数据集如下(共400条数据,4个特征,这里我们不使用ID和性别,只使用年龄和收入两个特征):

 

具体实现代码如下:

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
#import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_scoredataset = pd.read_csv('Social_Network_Ads.csv')
X = dataset.iloc[ : ,2:4].values
Y = dataset.iloc[ : ,4].valuesX_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2)sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test )classifier = LogisticRegression()
classifier.fit(X_train, Y_train)y_pred = classifier.predict(X_test)acc = accuracy_score(Y_test, y_pred)
print("准确率为:", acc)

此外还有一个其他方面的预测代码示例如下:

# encoding: utf-8
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
import numpy as np
import pandas as pd
import matplotlib.pyplot as pltdataset = pd.read_csv('dataset.csv', delimiter=',')
X = np.asarray(dataset.get(['x1', 'x2']))
y = np.asarray(dataset.get('y'))# 划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)# 使用 sklearn 的 LogisticRegression 作为模型,其中有 penalty,solver,dual 几个比较重要的参数,不同的参数有不同的准确率,这里为了简便都使用默认的,详细的请参考 sklearn 文档
model = LogisticRegression(solver='liblinear')# 拟合
model.fit(X, y)# 预测测试集
predictions = model.predict(X_test)# 打印准确率
print('测试集准确率:', accuracy_score(y_test, predictions))weights = np.column_stack((model.intercept_, model.coef_)).transpose()n = np.shape(X_train)[0]
xcord1 = []
ycord1 = []
xcord2 = []
ycord2 = []
for i in range(n):if int(y_train[i]) == 1:xcord1.append(X_train[i, 0])ycord1.append(X_train[i, 1])else:xcord2.append(X_train[i, 0])ycord2.append(X_train[i, 1])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
ax.scatter(xcord2, ycord2, s=30, c='green')
x_ = np.arange(-3.0, 3.0, 0.1)
y_ = (-weights[0] - weights[1] * x_) / weights[2]
ax.plot(x_, y_)
plt.xlabel('x1')
plt.ylabel('x2')
plt.show()

该出原文原文链接:https://blog.csdn.net/qq_24671941/article/details/94767008

 

癌症预测

示例代码如下:

# -*- coding: utf-8 -*-from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report# 加载数据
breast = load_breast_cancer()# 数据拆分
X_train, X_test, y_train, y_test = train_test_split(breast.data, breast.target)# 数据标准化
std = StandardScaler()
X_train = std.fit_transform(X_train)
X_test = std.transform(X_test)# 训练预测
lg = LogisticRegression()lg.fit(X_train, y_train)y_predict = lg.predict(X_test)# 查看训练准确度和预测报告
print(lg.score(X_test, y_test))
print(classification_report(y_test, y_predict, labels=[0, 1], target_names=["良性", "恶性"]))"""
0.958041958041958precision    recall  f1-score   support良性       0.98      0.90      0.93        48恶性       0.95      0.99      0.97        95avg / total       0.96      0.96      0.96       143"""

该处原文链接为:https://blog.csdn.net/mouday/article/details/86653227

这篇关于机器学习之逻辑回归实践:购买意向预测与其他预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/326095

相关文章

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

Docker集成CI/CD的项目实践

《Docker集成CI/CD的项目实践》本文主要介绍了Docker集成CI/CD的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、引言1.1 什么是 CI/CD?1.2 docker 在 CI/CD 中的作用二、Docke

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监